Journal article
A direct comparison of methods for assessing the threat from emerging infectious diseases in seasonally varying environments
- Abstract:
- Seasonal variations in environmental conditions lead to changing infectious disease epidemic risks at different times of year. The probability that early cases initiate a major epidemic depends on the season in which the pathogen enters the population. The instantaneous epidemic risk (IER) can be tracked. This quantity is straightforward to calculate, and corresponds to the probability of a major epidemic starting from a single case introduced at time t = t0 , assuming that environmental conditions remain identical from that time onwards (i.e. for all t ≥ t0 ). However, the threat when a pathogen enters the population in fact depends on changes in environmental conditions occurring within the timescale of the initial phase of the outbreak. For that reason, we compare the IER with a different metric: the case epidemic risk (CER). The CER corresponds to the probability of a major epidemic starting from a single case entering the population at time t = t0 , accounting for changes in environmental conditions after that time. We show how the IER and CER can be calculated using different epidemiological models (the stochastic Susceptible-Infectious-Removed model and a stochastic host-vector model that is parameterised using temperature data for Miami) in which transmission parameter values vary temporally. While the IER is always easy to calculate numerically, the adaptable method we provide for calculating the CER for the host-vector model can also be applied easily and solved using widely available software tools. In line with previous research, we demonstrate that, if a pathogen is likely to either invade the population or fade out on a fast timescale compared to changes in environmental conditions, the IER closely matches the CER. However, if this is not the case, the IER and the CER can be significantly different, and so the CER should be used. This demonstrates the need to consider future changes in environmental conditions carefully when assessing the risk posed by emerging pathogens.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.1MB, Terms of use)
-
- Publisher copy:
- 10.1016/j.jtbi.2022.111195
Authors
- Publisher:
- Elsevier
- Journal:
- Journal of Theoretical Biology More from this journal
- Volume:
- 548
- Article number:
- 111195
- Place of publication:
- England
- Publication date:
- 2022-06-16
- Acceptance date:
- 2022-06-06
- DOI:
- ISSN:
-
0022-5193
- Pmid:
-
35716723
- Language:
-
English
- Keywords:
- Pubs id:
-
1265941
- Local pid:
-
pubs:1265941
- Deposit date:
-
2023-09-16
Terms of use
- Copyright holder:
- Kaye et al.
- Copyright date:
- 2022
- Rights statement:
- © 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record