Journal article
Time-crystalline eigenstate order on a quantum processor.
- Abstract:
- Quantum many-body systems display rich phase structure in their low-temperature equilibrium states1. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases2-8 that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC)7,9-15. Concretely, dynamical phases can be defined in periodically driven many-body-localized (MBL) systems via the concept of eigenstate order7,16,17. In eigenstate-ordered MBL phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, or from regimes in which the dynamics of a few select states can mask typical behaviour. Here we implement tunable controlled-phase (CPHASE) gates on an array of superconducting qubits to experimentally observe an MBL-DTC and demonstrate its characteristic spatiotemporal response for generic initial states7,9,10. Our work employs a time-reversal protocol to quantify the impact of external decoherence, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. Furthermore, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to studying non-equilibrium phases of matter on quantum processors.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, 1.8MB, Terms of use)
-
- Publisher copy:
- 10.1038/s41586-021-04257-w
Authors
- Publisher:
- Springer Nature
- Journal:
- Nature More from this journal
- Volume:
- 601
- Issue:
- 7894
- Pages:
- 531-536
- Place of publication:
- England
- Publication date:
- 2021-11-30
- Acceptance date:
- 2021-11-17
- DOI:
- EISSN:
-
1476-4687
- ISSN:
-
0028-0836
- Pmid:
-
34847568
- Language:
-
English
- Keywords:
- Pubs id:
-
1214344
- Local pid:
-
pubs:1214344
- Deposit date:
-
2022-05-20
Terms of use
- Copyright holder:
- Mi et al.
- Copyright date:
- 2021
- Rights statement:
- ©2021 The Author(s). Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record