Journal article icon

Journal article

Universal equation of state for wave turbulence in a quantum gas

Abstract:
Boyle’s 1662 observation that the volume of a gas is, at constant temperature, inversely proportional to pressure, offered a prototypical example of how an equation of state (EoS) can succinctly capture key properties of a many-particle system. Such relationships are now cornerstones of equilibrium thermodynamics. Extending thermodynamic concepts to far-from-equilibrium systems is of great interest in various contexts, including glasses, active matter and turbulence, but is in general an open problem. Here, using a homogeneous ultracold atomic Bose gas, we experimentally construct an EoS for a turbulent cascade of matter waves. Under continuous forcing at a large length scale and dissipation at a small one, the gas exhibits a non-thermal, but stationary, state, which is characterized by a power-law momentum distribution sustained by a scale-invariant momentum-space energy flux. We establish the amplitude of the momentum distribution and the underlying energy flux as equilibrium-like state variables, related by an EoS that does not depend on the details of the energy injection or dissipation, or on the history of the system. Moreover, we show that the equations of state for a wide range of interaction strengths and gas densities can be empirically scaled onto each other. This results in a universal dimensionless EoS that sets benchmarks for the theory and should also be relevant for other turbulent systems.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1038/s41586-023-06240-z

Authors



Publisher:
Springer Nature
Journal:
Nature More from this journal
Volume:
620
Issue:
7974
Pages:
521-524
Publication date:
2023-07-26
Acceptance date:
2023-05-19
DOI:
EISSN:
1476-4687
ISSN:
0028-0836


Language:
English
Pubs id:
1472238
Local pid:
pubs:1472238
Deposit date:
2023-06-22

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP