Journal article icon

Journal article

Mix and match: phenotypic coexistence as a key facilitator of cancer invasion

Abstract:
Invasion of healthy tissue is a defining feature of malignant tumours. Traditionally, invasion is thought to be driven by cells that have acquired all the necessary traits to overcome the range of biological and physical defences employed by the body. However, in light of the ever-increasing evidence for geno- and phenotypic intra-tumour heterogeneity, an alternative hypothesis presents itself: could invasion be driven by a collection of cells with distinct traits that together facilitate the invasion process? In this paper, we use a mathematical model to assess the feasibility of this hypothesis in the context of acid-mediated invasion. We assume tumour expansion is obstructed by stroma which inhibits growth and extra-cellular matrix (ECM) which blocks cancer cell movement. Further, we assume that there are two types of cancer cells: (i) a glycolytic phenotype which produces acid that kills stromal cells and (ii) a matrix-degrading phenotype that locally remodels the ECM. We extend the Gatenby–Gawlinski reaction–diffusion model to derive a system of five coupled reaction–diffusion equations to describe the resulting invasion process. We characterise the spatially homogeneous steady states and carry out a simulation study in one spatial dimension to determine how the tumour develops as we vary the strength of competition between the two phenotypes. We find that overall tumour growth is most extensive when both cell types can stably coexist, since this allows the cells to locally mix and benefit most from the combination of traits. In contrast, when inter-species competition exceeds intra-species competition the populations spatially separate and invasion arrests either: (i) rapidly (matrix-degraders dominate) or (ii) slowly (acid-producers dominate). Overall, our work demonstrates that the spatial and ecological relationship between a heterogeneous population of tumour cells is a key factor in determining their ability to cooperate. Specifically, we predict that tumours in which different phenotypes coexist stably are more invasive than tumours in which phenotypes are spatially separated.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.1007/s11538-019-00675-0

Authors


More by this author
Institution:
University of Oxford
Department:
Doctoral Training Centre (MPLS)
Oxford college:
Jesus College
Role:
Author
ORCID:
0000-0003-4484-8823
More by this author
Institution:
University of Oxford
Department:
Mathematical Institute
Oxford college:
St Anne's College
Role:
Author
ORCID:
0000-0001-9638-7278
More by this author
Role:
Author
ORCID:
0000-0002-8888-7747
More by this author
Role:
Author
ORCID:
0000-0002-2536-4383


Publisher:
Springer
Journal:
Bulletin of Mathematical Biology More from this journal
Volume:
82
Issue:
1
Article number:
15
Publication date:
2020-01-17
Acceptance date:
2019-12-03
DOI:
EISSN:
1522-9602
ISSN:
0092-8240


Language:
English
Keywords:
Pubs id:
pubs:1048779
UUID:
uuid:3eefa64e-45e4-4204-94c6-8d7d013b5da0
Local pid:
pubs:1048779
Source identifiers:
1048779
Deposit date:
2019-12-03

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP