Journal article
Investigations into resting-state connectivity using independent component analysis.
- Abstract:
- Inferring resting-state connectivity patterns from functional magnetic resonance imaging (fMRI) data is a challenging task for any analytical technique. In this paper, we review a probabilistic independent component analysis (PICA) approach, optimized for the analysis of fMRI data, and discuss the role which this exploratory technique can take in scientific investigations into the structure of these effects. We apply PICA to fMRI data acquired at rest, in order to characterize the spatio-temporal structure of such data, and demonstrate that this is an effective and robust tool for the identification of low-frequency resting-state patterns from data acquired at various different spatial and temporal resolutions. We show that these networks exhibit high spatial consistency across subjects and closely resemble discrete cortical functional networks such as visual cortical areas or sensory-motor cortex.
- Publication status:
- Published
Actions
Authors
- Journal:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences More from this journal
- Volume:
- 360
- Issue:
- 1457
- Pages:
- 1001-1013
- Publication date:
- 2005-05-01
- DOI:
- EISSN:
-
1471-2970
- ISSN:
-
0962-8436
- Language:
-
English
- Keywords:
- Pubs id:
-
pubs:116711
- UUID:
-
uuid:3bce92bd-3781-4f2e-b8dc-e8c16ff4f9ba
- Local pid:
-
pubs:116711
- Source identifiers:
-
116711
- Deposit date:
-
2012-12-19
Terms of use
- Copyright date:
- 2005
If you are the owner of this record, you can report an update to it here: Report update to this record