Journal article
Repair and stabilization in confined nanoscale systems - inorganic nanowires within single-walled carbon nanotubes
- Abstract:
- Repair is ubiquitous in biological systems, but rare in the inorganic world. We show that inorganic nanoscale systems can however possess remarkable repair and reconfiguring capabilities when subjected to extreme confinement. Confined crystallization inside single-walled carbon nanotube (SWCNT) templates is known to produce the narrowest inorganic nanowires, but little is known about the potential for repair of such nanowires once crystallized, and what can drive it. Here inorganic nanowires encapsulated within SWCNTs were seen by high-resolution transmission electron microscopy to adjust to changes in their nanotube template through atomic rearrangement at room temperature. These observations highlight nanowire repair processes, supported by theoretical modeling, that are consistent with atomic migration at fractured, ionic ends of the nanowires encouraged by long-range force fields, as well as release-blocking mechanisms where nanowire atoms bind to nanotube walls to stabilize the ruptured nanotube and allow the nanowire to reform. Such principles can inform the design of nanoscale systems with enhanced resilience. © 2012 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.
- Publication status:
- Published
Actions
Authors
- Journal:
- NANO RESEARCH More from this journal
- Volume:
- 5
- Issue:
- 12
- Pages:
- 833-844
- Publication date:
- 2012-12-01
- DOI:
- EISSN:
-
1998-0000
- ISSN:
-
1998-0124
- Language:
-
English
- Keywords:
- Pubs id:
-
pubs:375353
- UUID:
-
uuid:3b099330-d5ea-4fad-8602-93d2fd8f56c2
- Local pid:
-
pubs:375353
- Source identifiers:
-
375353
- Deposit date:
-
2013-11-17
Terms of use
- Copyright date:
- 2012
If you are the owner of this record, you can report an update to it here: Report update to this record