Journal article
Super-resolution linear optical imaging in the far field
- Abstract:
- The resolution of optical imaging devices is ultimately limited by the diffraction of light. To circumvent this limit, modern superresolution microscopy techniques employ active interaction with the object by exploiting its optical nonlinearities, nonclassical properties of the illumination beam, or near field probing. Thus, they are not applicable whenever such interaction is not possible, for example, in astronomy or noninvasive biological imaging. Far field, linear optical superresolution techniques based on passive analysis of light coming from the object would cover these gaps. In this Letter, we present the first proof-of-principle demonstration of such a technique for 2D imaging. It works by accessing information about spatial correlations of the image optical field and, hence, about the object itself via measuring projections onto Hermite-Gaussian transverse spatial modes. With a basis of 21 spatial modes in both transverse dimensions, we perform two-dimensional imaging with twofold resolution enhancement beyond the diffraction limit.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, 1.0MB, Terms of use)
-
- Publisher copy:
- 10.1103/PhysRevLett.127.253602
Authors
- Publisher:
- American Physical Society
- Journal:
- Physical Review Letters More from this journal
- Volume:
- 127
- Article number:
- 253602
- Publication date:
- 2021-12-15
- Acceptance date:
- 2021-11-16
- DOI:
- EISSN:
-
1079-7114
- ISSN:
-
0031-9007
- Language:
-
English
- Keywords:
- Pubs id:
-
1212204
- Local pid:
-
pubs:1212204
- Deposit date:
-
2021-11-26
Terms of use
- Copyright holder:
- American Physical Society
- Copyright date:
- 2021
- Rights statement:
- © 2021 American Physical Society.
If you are the owner of this record, you can report an update to it here: Report update to this record