Journal article
The bouncy particle sampler: A non-reversible rejection free Markov chain Monte Carlo method
- Abstract:
- Many Markov chain Monte Carlo techniques currently available rely on discrete-time reversible Markov processes whose transition kernels are variations of the Metropolis–Hastings algorithm. We explore and generalize an alternative scheme recently introduced in the physics literature where the target distribution is explored using a continuous-time non-reversible piecewise-deterministic Markov process. In the Metropolis–Hastings algorithm, a trial move to a region of lower target density, equivalently of higher “energy”, than the current state can be rejected with positive probability. In this alternative approach, a particle moves along straight lines around the space and, when facing a high energy barrier, it is not rejected but its path is modified by bouncing against this barrier. By reformulating this algorithm using inhomogeneous Poisson processes, we exploit standard sampling techniques to simulate exactly this Markov process in a wide range of scenarios of interest. Additionally, when the target distribution is given by a product of factors dependent only on subsets of the state variables, such as the posterior distribution associated with a probabilistic graphical model, this method can be modified to take advantage of this structure by allowing computationally cheaper “local” bounces which only involve the state variables associated to a factor, while the other state variables keep on evolving. In this context, by leveraging techniques from chemical kinetics, we propose several computationally efficient implementations. Experimentally, this new class of Markov chain Monte Carlo schemes compares favorably to state-of-the-art methods on various Bayesian inference tasks, including for high dimensional models and large data sets
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Accepted manuscript, pdf, 1.9MB, Terms of use)
-
- Publisher copy:
- 10.1080/01621459.2017.1294075
Authors
+ Air Force Office of Scientific Research
More from this funder
- Funding agency for:
- Doucet, A
- Grant:
- AFOSRA/AOARD-144042
+ Engineering and Physical Sciences Research Council
More from this funder
- Funding agency for:
- Doucet, A
- Grant:
- AFOSRA/AOARD-144042
- EP/N000188/1
+ Canadian National Science and Engineering Research Council
More from this funder
- Grant:
- Discovery Grant
- Publisher:
- Taylor and Francis
- Journal:
- Journal of the American Statistical Association More from this journal
- Volume:
- 113
- Issue:
- 522
- Pages:
- 855-867
- Publication date:
- 2017-02-28
- Acceptance date:
- 2017-01-06
- DOI:
- EISSN:
-
1537-274X
- ISSN:
-
0162-1459
- Keywords:
- Pubs id:
-
pubs:679244
- UUID:
-
uuid:301047da-e7f2-4cd7-9026-fdd5c3046903
- Local pid:
-
pubs:679244
- Source identifiers:
-
679244
- Deposit date:
-
2017-02-10
Terms of use
- Copyright holder:
- American Statistical Association
- Copyright date:
- 2017
- Notes:
- © 2017 American Statistical Association. This is the accepted manuscript version of the article. The final version is available online from Taylor and Francis at: https://doi.org/10.1080/01621459.2017.1294075
If you are the owner of this record, you can report an update to it here: Report update to this record