Journal article
Impact of virus subtype and host IFNL4 genotype on large-scale RNA structure formation in the genome of hepatitis C virus
- Abstract:
- Mechanisms underlying the ability of hepatitis C virus (HCV) to establish persistent infections and induce progressive liver disease remain poorly understood. HCV is one of several positive-stranded RNA viruses capable of establishing persistence in their immunocompetent vertebrate hosts, an attribute associated with formation of large scale RNA structure in their genomic RNA. We developed novel methods to analyse and visualise genome-scale ordered RNA structure (GORS) predicted from the increasingly large datasets of complete genome sequences of HCV. Structurally conserved RNA secondary structure in coding regions of HCV localised exclusively to polyprotein ends (core, NS5B). Coding regions elsewhere were also intensely structured based on elevated minimum folding energy difference (MFED) values, but the actual stem-loop elements involved in genome folding were structurally entirely distinct, even between subtypes 1a and 1b. Dynamic remodelling was further evident from comparison of HCV strains in different host genetic background. Significantly higher MFED values, greater suppression of UpA dinucleotide frequencies and restricted diversification were found in subjects with the TT genotype of the rs12979860 SNP in the IFNL4 gene compared to the CC (non-expressing) allele. These structural and compositional associations with expression of interferon-λ4 were recapitulated on a larger scale by higher MFED values and greater UpA suppression of genotype 1 compared to genotype 3a, associated with previously reported HCV genotype-associated differences in hepatic interferon-stimulated gene induction. Associations between innate cellular responses with HCV structure and further evolutionary constraints represents an important new element in RNA virus evolution and the adaptive interplay between virus and host.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, 35.8MB, Terms of use)
-
- Publisher copy:
- 10.1261/rna.075465.120
Authors
- Publisher:
- Cold Spring Harbor Laboratory Press
- Journal:
- RNA More from this journal
- Volume:
- 26
- Issue:
- 11
- Pages:
- 1541-1556
- Place of publication:
- United States
- Publication date:
- 2020-08-03
- Acceptance date:
- 2020-07-29
- DOI:
- EISSN:
-
1469-9001
- ISSN:
-
1355-8382
- Pmid:
-
32747607
- Language:
-
English
- Keywords:
- Pubs id:
-
1124781
- Local pid:
-
pubs:1124781
- Deposit date:
-
2020-08-26
Terms of use
- Copyright holder:
- Simmonds et al.
- Copyright date:
- 2020
- Rights statement:
- ©2020 Simmonds et al. Published by Cold Spring Harbor Laboratory Press for the RNA Society.
- Notes:
- This article, published in RNA, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record