Journal article icon

Journal article

Genome sequencing of an extended series of NDM-producing Klebsiella pneumoniae isolates from neonatal infections in a Nepali hospital characterizes the extent of community- versus hospital-associated transmission in an endemic setting.

Abstract:
NDM-producing Klebsiella pneumoniae strains represent major clinical and infection control challenges, particularly in resource-limited settings with high rates of antimicrobial resistance. Determining whether transmission occurs at a gene, plasmid, or bacterial strain level and within hospital and/or the community has implications for monitoring and controlling spread. Whole-genome sequencing (WGS) is the highest-resolution typing method available for transmission epidemiology. We sequenced carbapenem-resistant K. pneumoniae isolates from 26 individuals involved in several infection case clusters in a Nepali neonatal unit and 68 other clinical Gram-negative isolates from a similar time frame, using Illumina and PacBio technologies. Within-outbreak chromosomal and closed-plasmid structures were generated and used as data set-specific references. Three temporally separated case clusters were caused by a single NDM K. pneumoniae strain with a conserved set of four plasmids, one being a 304,526-bp plasmid carrying bla(NDM-1). The plasmids contained a large number of antimicrobial/heavy metal resistance and plasmid maintenance genes, which may have explained their persistence. No obvious environmental/human reservoir was found. There was no evidence of transmission of outbreak plasmids to other Gram-negative clinical isolates, although bla(NDM) variants were present in other isolates in different genetic contexts. WGS can effectively define complex antimicrobial resistance epidemiology. Wider sampling frames are required to contextualize outbreaks. Infection control may be effective in terminating outbreaks caused by particular strains, even in areas with widespread resistance, although this study could not demonstrate evidence supporting specific interventions. Larger, detailed studies are needed to characterize resistance genes, vectors, and host strains involved in disease, to enable effective intervention.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.1128/aac.03900-14

Authors


More by this author
Institution:
University of Oxford
Division:
MSD
Department:
NDM
Sub department:
NDM Experimental Medicine
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
NDM
Sub department:
NDM Experimental Medicine
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
NDM
Sub department:
Human Genetics Wt Centre
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
NDM
Sub department:
NDM Experimental Medicine
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
NDM
Sub department:
NDM Experimental Medicine
Role:
Author


Publisher:
American Society for Microbiology
Journal:
Antimicrobial agents and chemotherapy More from this journal
Volume:
58
Issue:
12
Pages:
7347-7357
Publication date:
2014-12-01
DOI:
EISSN:
1098-6596
ISSN:
0066-4804

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP