Journal article
Superheating gold beyond the predicted entropy catastrophe threshold
- Abstract:
- In their landmark study1, Fecht and Johnson unveiled a phenomenon that they termed the ‘entropy catastrophe’, a critical point where the entropy of superheated crystals equates to that of their liquid counterparts. This point marks the uppermost stability boundary for solids at temperatures typically around three times their melting point. Despite the theoretical prediction of this ultimate stability threshold, its practical exploration has been prevented by numerous intermediate destabilizing events, colloquially known as a hierarchy of catastrophes2, 3, 4–5, which occur at far lower temperatures. Here we experimentally test this limit under ultrafast heating conditions, directly tracking the lattice temperature by using high-resolution inelastic X-ray scattering. Our gold samples are heated to temperatures over 14 times their melting point while retaining their crystalline structure, far surpassing the predicted threshold and suggesting a substantially higher or potentially no limit for superheating. We point to the inability of our samples to expand on these very short timescales as an important difference from previous estimates. These observations provide insights into the dynamics of melting under extreme conditions.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 3.4MB, Terms of use)
-
- Publisher copy:
- 10.1038/s41586-025-09253-y
Authors
- Publisher:
- Nature Research
- Journal:
- Nature More from this journal
- Volume:
- 643
- Issue:
- 8073
- Pages:
- 950-954
- Publication date:
- 2025-07-23
- Acceptance date:
- 2025-06-06
- DOI:
- EISSN:
-
1476-4687
- ISSN:
-
0028-0836
- Language:
-
English
- Source identifiers:
-
3143469
- Deposit date:
-
2025-07-24
This ORA record was generated from metadata provided by an external service. It has not been edited by the ORA Team.
If you are the owner of this record, you can report an update to it here: Report update to this record