Journal article icon

Journal article

Changes in creatine transporter function during cardiac maturation in the rat.

Abstract:
BACKGROUND: It is well established that the immature myocardium preferentially utilises non-oxidative energy-generating pathways. It exhibits low energy-transfer capacity via the creatine kinase (CK) shuttle, reflected in phosphocreatine (PCr), total creatine and CK levels that are much lower than those of adult myocardium. The mechanisms leading to gradually increasing energy transfer capacity during maturation are poorly understood. Creatine is not synthesised in the heart, but taken up exclusively by the action of the creatine transporter protein (CrT). To determine whether this transporter is ontogenically regulated, the present study serially examined CrT gene expression pattern, together with creatine uptake kinetics and resulting myocardial creatine levels, in rats over the first 80 days of age. RESULTS: Rats were studied during the late prenatal period (-2 days before birth) and 7, 13, 21, 33, 50 and 80 days after birth. Activity of cardiac citrate synthase, creatine kinase and its isoenzymes as well as lactate dehydrogenase (LDH) and its isoenzymes demonstrated the well-described shift from anaerobic towards aerobic metabolism. mRNA levels of CrT in the foetal rat hearts, as determined by real-time PCR, were about 30% of the mRNA levels in the adult rat heart and gradually increased during development. Creatine uptake in isolated perfused rat hearts increased significantly from 3.0 nmol/min/gww at 13 days old to 4.9 nmol/min/gww in 80 day old rats. Accordingly, total creatine content in hearts, measured by HPLC, increased steadily during maturation (30 nmol/mg protein (-2 days) vs 87 nmol/mg protein (80 days)), and correlated closely with CrT gene expression. CONCLUSIONS: The maturation-dependant alterations of CK and LDH isoenzyme activities and of mitochondrial oxidative capacity were paralleled by a progressive increase of CrT expression, creatine uptake kinetics and creatine content in the heart.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1186/1471-213x-10-70

Authors


More by this author
Institution:
University of Oxford
Role:
Author
More by this author
Institution:
University of Oxford
Role:
Author
More by this author
Institution:
University of Oxford
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Physiology Anatomy & Genetics
Role:
Author


Publisher:
BioMed Central
Journal:
BMC developmental biology More from this journal
Volume:
10
Issue:
1
Pages:
70
Publication date:
2010-06-22
DOI:
EISSN:
1471-213X
ISSN:
1471-213X


Language:
English
Keywords:
Pubs id:
pubs:104243
UUID:
uuid:25bd5207-0d03-43bd-8cf6-594d7799744a
Local pid:
pubs:104243
Source identifiers:
104243
Deposit date:
2012-12-19

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP