Journal article
The design and evaluation of a mobile system for rapid diagnostic test interpretation
- Abstract:
- Rapid diagnostic tests (RDTs) provide point-of-care medical screening without the need for expensive laboratory equipment. RDTs are theoretically straightforward to use, yet their analog colorimetric output leaves room for diagnostic uncertainty and error. Furthermore, RDT results within a community are kept isolated unless they are aggregated by healthcare workers, limiting the potential that RDTs can have in supporting public health efforts. In light of these issues, we present a system called RDTScan for detecting and interpreting lateral flow RDTs with a smartphone. RDTScan provides real-time guidance for clear RDT image capture and automatic interpretation for accurate diagnostic decisions. RDTScan is structured to be quickly configurable to new RDT designs by requiring only a template image and some metadata about how the RDT is supposed to be read, making it easier to extend than a data-driven approach. Through a controlled lab study, we demonstrate that RDTScan's limit-of-detection can match, and even exceed, the performance of expert readers who are interpreting the physical RDTs themselves. We then present two field evaluations of smartphone apps built on the RDTScan system: (1) at-home influenza testing in Australia and (2) malaria testing by community healthcare workers in Kenya. RDTScan achieved 97.5% and 96.3% accuracy compared to RDT interpretation by experts in the Australia Flu Study and the Kenya Malaria Study, respectively.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, 6.9MB, Terms of use)
-
- Publisher copy:
- 10.1145/3448106
Authors
- Publisher:
- Association for Computing Machinery (ACM)
- Journal:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies More from this journal
- Volume:
- 5
- Issue:
- 1
- Pages:
- 1–26
- Article number:
- 29
- Publication date:
- 2021-03-29
- DOI:
- EISSN:
-
2474-9567
- Language:
-
English
- Keywords:
- Pubs id:
-
1172001
- Local pid:
-
pubs:1172001
- Deposit date:
-
2021-12-23
Terms of use
- Copyright holder:
- Park et al.
- Copyright date:
- 2021
- Rights statement:
- ©2021 Copyright held by the owner/author(s). This work is licensed under a Creative Commons Attribution International 4.0 License.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record