Journal article icon

Journal article

Interdiffusion control in sequentially evaporated organic–inorganic perovskite solar cells †

Abstract:
Vacuum deposition of metal halide perovskite is a scalable and adaptable method. In this study, we adopt sequential evaporation to form the perovskite layer and reveal how the relative humidity during the annealing step, impacts its crystallinity and the photoluminescence quantum yield (PLQY). By controlling the humidity, we achieved a significant enhancement of 50 times in PLQY from 0.12% to 6%. This improvement corresponds to an increase in implied open-circuit voltage (Voc) of over 100 meV. We investigate the origin of this enhanced PLQY by combining structural, chemical and spectroscopic methods. Our results show that annealing in a controlled humid environment improves the organic and inorganic halides' interdiffusion throughout the bulk, which in turn significantly reduces non-radiative recombination both in the bulk and at the interfaces with the charge transport layers, which enhanced both the attainable open-circuit voltage and the charge carrier diffusion length. We further demonstrate that the enhanced intermixing results in fully vacuum-deposited FA0.85Cs0.15Pb(IxCl1−x)3 p-i-n perovskite solar cells (PSCs) with a maximum power point tracked efficiency of 21.0% under simulated air mass (AM) 1.5G 100 mW cm−2 irradiance. Additionally, controlled humidity annealed PSCs exhibit superior stability when aged under full spectrum simulated solar illumination at 85 °C and in open-circuit conditions.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1039/d5el00017c

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Physics - Central
Role:
Author
ORCID:
0000-0001-5880-6996
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Physics - Central
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Physics - Central
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Physics - Central
Role:
Author


More from this funder
Funder identifier:
https://ror.org/018mejw64
More from this funder
Funder identifier:
https://ror.org/0333xzh65
More from this funder
Funder identifier:
https://ror.org/001aqnf71
More from this funder
Funder identifier:
https://ror.org/00rk2pe57


Publisher:
Royal Society of Chemistry
Journal:
EES Solar More from this journal
Publication date:
2025-03-19
Acceptance date:
2025-02-17
DOI:
EISSN:
3033-4063


Language:
English
Source identifiers:
2786805
Deposit date:
2025-03-20
This ORA record was generated from metadata provided by an external service. It has not been edited by the ORA Team.

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP