Journal article
Global implications of 1.5 °C and 2 °C warmer worlds on extreme river flows
- Abstract:
- Targets agreed to in Paris in 2015 aim to limit global warming to "well below 2 °C and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels". Despite the far-reaching consequences of this multi-lateral climate change mitigation strategy, the implications for global river flows remain unclear. Here we estimate the impacts of 1.5ºC vs 2.0ºC mitigation scenarios on peak flows by using daily river flow data from a multi-model ensemble which follows the HAPPI Protocol (that is specifically designed to simulate these temperature targets). We find agreement between models with regard to changing risk of river flow extremes. Moreover, we find that the response at 2.0°C is not a uniform extension of the response at 1.5º, suggesting a non-linear global response of peak flows to the two mitigation levels. Yet committing to the 1.5ºC warming target, rather than 2ºC, is projected to lead to an increase in the frequency of occurrence of extreme flows in several large catchments. In the most affected areas, predominantly in South Asia, while region-specific features such as aerosol loads may determine precipitation patterns, we estimate that under our 1.5ºC scenario the historical 1-in-100-year flow occurs with a frequency of 1-in-25 years. At 2.0ºC similar increases are observed in several global regions. These shifts are also accompanied by changes in the duration of rainy seasons which influence the occurrence of high flows.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.2MB, Terms of use)
-
- Publisher copy:
- 10.1088/1748-9326/aad985
Authors
- Publisher:
- IOP Publishing
- Journal:
- Environmental Research Letters More from this journal
- Volume:
- 13
- Issue:
- 9
- Publication date:
- 2018-08-10
- Acceptance date:
- 2018-08-10
- DOI:
- EISSN:
-
1748-9326
- Pubs id:
-
pubs:908226
- UUID:
-
uuid:23ecb9ac-881f-4939-ab94-81dc50989bcb
- Local pid:
-
pubs:908226
- Source identifiers:
-
908226
- Deposit date:
-
2018-08-17
Terms of use
- Copyright holder:
- Paltan et al
- Copyright date:
- 2018
- Notes:
-
© 2018 The Author(s). Published by IOP Publishing Ltd.
As the Version of Record of this article is going to be/has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted Manuscript is available for reuse under a CC BY 3.0 licence immediately.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record