Journal article icon

Journal article

Phase-amplitude dynamics of the nonlinear Schrödinger equation with rapid forcing

Abstract:
We consider the initial value problem for the forced one dimensional nonlinear Schrödinger equation (NLS), where the forcing is assumed to be fast compared to the evolution of the unforced equation. This suggests the introduction of two time scales. Solutions to the forced NLS are sought by expressing the dependent variable in modulus-phase form and expanding in powers of a small parameter, which is inversely related to the forcing time scale. This system is similar to a forced eikonal-transport system arising in nonlinear geometrical optics. We focus on the effect that the forcing has on the NLS standing solitary wave. Solutions to second order in the expansion are computed analytically for some specific choices of the forcing function. A general conclusion of this work is that the effect of the forcing on the phase variable is quite important in determining the overall structure of the forced solitary wave. © 1995 American Institute of Physics.

Actions


Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Mathematical Institute
Role:
Author


Journal:
Journal of Mathematical Physics More from this journal
Volume:
36
Issue:
9
Pages:
4923-4939
Publication date:
1995-01-01
ISSN:
0022-2488


Language:
English
Pubs id:
pubs:133325
UUID:
uuid:215a5bf6-a654-4f28-bfd5-1f67be9b3fd5
Local pid:
pubs:133325
Source identifiers:
133325
Deposit date:
2012-12-19

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP