Journal article
Dipolar Bose-Hubbard model in finite-size real-space cylindrical lattices
- Abstract:
- Recent experimental progress in magnetic atoms and polar molecules has created the prospect of simulating dipolar Hubbard models with off-site interactions. When applied to real-space cylindrical optical lattices, these anisotropic dipole-dipole interactions acquire a tunable spatially dependent component while they remain translationally invariant in the axial direction, creating a sublattice structure in the azimuthal direction. We numerically study how the coexistence of these classes of interactions affects the ground state of hard-core dipolar bosons at half filling in a finite-size cylindrical optical lattice with octagonal rings. When these two interaction classes cooperate, we find a solid state where the density order is determined by the azimuthal sublattice structure and builds smoothly as the interaction strength increases. For dipole polarizations where the axial interactions are sufficiently repulsive, the repulsion competes with the sublattice structure, significantly increasing entanglement and creating two distinct ordered density patterns. The spatially varying interactions cause the emergence of these ordered states in small lattices as a function of interaction strength to be staggered according to the azimuthal sublattices.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, 1.1MB, Terms of use)
-
- Publisher copy:
- 10.1103/physreva.105.053301
Authors
- Publisher:
- American Physical Society
- Journal:
- Physical Review A More from this journal
- Volume:
- 105
- Issue:
- 5
- Article number:
- 053301
- Publication date:
- 2022-05-03
- Acceptance date:
- 2022-03-29
- DOI:
- EISSN:
-
2469-9934
- ISSN:
-
2469-9926
- Language:
-
English
- Keywords:
- Pubs id:
-
1255445
- Local pid:
-
pubs:1255445
- Deposit date:
-
2022-05-23
Terms of use
- Copyright holder:
- American Physical Society
- Copyright date:
- 2022
- Rights statement:
- © 2022 American Physical Society
If you are the owner of this record, you can report an update to it here: Report update to this record