Thesis icon

Thesis

High fidelity readout and protection of a 43Ca+ trapped ion qubit

Abstract:
This thesis describes theoretical and experimental work whose main aim is the development of techniques for using trapped 43Ca⁺ ions for quantum information processing. I present a rate equations model of 43Ca⁺, and compare it with experimental data. The model is then used to investigate and optimise an electron-shelving readout method from a ground-level hyperfine qubit. The process is robust against common experimental imperfections. A shelving fidelity of up to 99.97% is theoretically possible, taking 100 μs. The laser pulse sequence can be greatly simplified for only a small reduction in the fidelity. The simplified method is tested experimentally with fidelities up to 99.8%. The shelving procedure could be applied to other commonly-used species of ion qubit. An entangling two-qubit quantum controlled-phase gate was attempted between a 40Ca⁺ and a 43Ca⁺ ion. The experiment did not succeed due to frequent decrystallisation of the ion pair, and strong motional decoherence. The source of the problems was never identified despite significant experimental effort, and the decision was made to suspend the experiments and continue them in an improved ion trap which is under construction. A sequence of pi-pulses, inspired by the Hahn spin-echo, was derived that is capable of greatly reducing dephasing of any qubit. If the qubit precession frequency varies with time as an nth-order polynomial, an (n+1) pulse sequence is theoretically capable of perfectly cancelling the resulting phase error. The sequence is used on a 43Ca+ magnetic-field-sensitive hyperfine qubit, with 20 pulses increasing the coherence time by a factor of 75 compared to an experiment without any spin-echo. In our ambient noise environment the well-known Carr-Purcell-Meiboom-Gill dynamic-decoupling method was found to be comparably effective.

Actions


Access Document


Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Atomic & Laser Physics
Research group:
Ion Trap Group
Oxford college:
St Catherine's College
Role:
Author

Contributors

Division:
MPLS
Department:
Physics
Role:
Supervisor


Publication date:
2009
DOI:
Type of award:
DPhil
Level of award:
Doctoral
Awarding institution:
Oxford University, UK


Language:
English
Keywords:
Subjects:
UUID:
uuid:21178e0f-637e-46b8-8448-3cbce78460ff
Local pid:
ora:3673
Deposit date:
2010-04-26

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP