Journal article
Skyrmions in twisted bilayer graphene: stability, pairing, and crystallization
- Abstract:
- We study the excitations that emerge upon doping the translationally invariant correlated insulating states in magic-angle twisted bilayer graphene at various integer filling factors ν. We identify parameter regimes where these are excitations associated with skyrmion textures in the spin or pseudospin degrees of freedom, and explore both short-distance pairing effects and the formation of long-range ordered skyrmion crystals. We perform a comprehensive analysis of the pseudospin skyrmions that emerge upon doping insulators at even ν, delineating the regime in parameter space where these are the lowest-energy charged excitations by means of self-consistent Hartree-Fock calculations on the interacting Bistritzer-MacDonald model. We explicitly demonstrate the purely electron-mediated pairing of skyrmions, a key ingredient behind a recent proposal of skyrmion superconductivity. Building upon this, we construct hopping models to extract the effective masses of paired skyrmions, and discuss our findings and their implications for skyrmion superconductivity in relation to experiments, focusing on the dome-shaped dependence of the transition temperature on the twist angle. We also investigate the properties of spin skyrmions about the quantized anomalous Hall insulator at ν=+3. In both cases, we demonstrate the formation of robust spin or pseudospin skyrmion crystals upon doping to a finite density away from integer filling.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 4.6MB, Terms of use)
-
- Publisher copy:
- 10.1103/PhysRevX.12.031020
Authors
- Publisher:
- American Physical Society
- Journal:
- Physical Review X More from this journal
- Volume:
- 12
- Issue:
- 3
- Article number:
- 031020
- Publication date:
- 2022-07-29
- Acceptance date:
- 2022-06-29
- DOI:
- EISSN:
-
2160-3308
- Language:
-
English
- Keywords:
- Pubs id:
-
1226758
- Local pid:
-
pubs:1226758
- Deposit date:
-
2022-06-29
Terms of use
- Copyright date:
- 2022
- Rights statement:
- Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record