Journal article
Stress‐induced Rab11a‐exosomes induce amphiregulin‐mediated cetuximab resistance in colorectal cancer
- Abstract:
- Exosomes are secreted vesicles made intracellularly in the endosomal system. We have previously shown that exosomes are not only made in late endosomes, but also in recycling endosomes marked by the monomeric G‐protein Rab11a. These vesicles, termed Rab11a‐exosomes, are preferentially secreted under nutrient stress from several cancer cell types, including HCT116 colorectal cancer (CRC) cells. HCT116 Rab11a‐exosomes have particularly potent signalling activities, some mediated by the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). Mutant activating forms of KRAS, a downstream target of EGFR, are often found in advanced CRC. When absent, monoclonal antibodies, such as cetuximab, which target the EGFR and block the effects of EGFR ligands, such as AREG, can be administered. Patients, however, inevitably develop resistance to cetuximab, either by acquiring KRAS mutations or via non‐genetic microenvironmental changes. Here we show that nutrient stress in several CRC cell lines causes the release of AREG‐carrying Rab11a‐exosomes. We demonstrate that while soluble AREG has no effect, much lower levels of AREG bound to Rab11a‐exosomes from cetuximab‐resistant KRAS‐mutant HCT116 cells, can suppress the effects of cetuximab on KRAS‐wild type Caco‐2 CRC cells. Using neutralising anti‐AREG antibodies and an intracellular EGFR kinase inhibitor, we show that this effect is mediated via AREG activation of EGFR, and not transfer of activated KRAS. Therefore, presentation of AREG on Rab11a‐exosomes affects its ability to compete with cetuximab. We propose that this Rab11a‐exosome‐mediated mechanism contributes to the establishment of resistance in cetuximab‐sensitive cells and may explain why in cetuximab‐resistant tumours only some cells carry mutant KRAS.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.7MB, Terms of use)
-
- Publisher copy:
- 10.1002/jev2.12465
Authors
- Publisher:
- Wiley Open Access
- Journal:
- Journal of Extracellular Vesicles More from this journal
- Volume:
- 13
- Issue:
- 6
- Article number:
- e12465
- Publication date:
- 2024-06-18
- Acceptance date:
- 2024-05-22
- DOI:
- EISSN:
-
2001-3078
- ISSN:
-
2001-3078
- Language:
-
English
- Keywords:
- Pubs id:
-
2009048
- Local pid:
-
pubs:2009048
- Source identifiers:
-
2049544
- Deposit date:
-
2024-06-18
This ORA record was generated from metadata provided by an external service. It has not been edited by the ORA Team.
If you are the owner of this record, you can report an update to it here: Report update to this record