Journal article
Analysis and clustering of residential customers energy behavioral demand using smart meter data
- Abstract:
- Clustering methods are increasingly being applied to residential smart meter data, which provides a number of important opportunities for distribution network operators (DNOs) to manage and plan low-voltage networks. Clustering has a number of potential advantages for DNOs, including the identification of suitable candidates for demand response and the improvement of energy profile modeling. However, due to the high stochasticity and irregularity of household-level demand, detailed analytics are required to define appropriate attributes to cluster. In this paper, we present in-depth analysis of customer smart meter data to better understand the peak demand and major sources of variability in their behavior. We find four key time periods, in which the data should be analyzed, and use this to form relevant attributes for our clustering. We present a finite mixture model-based clustering, where we discover ten distinct behavior groups describing customers based on their demand and their variability. Finally, using an existing bootstrap technique, we show that the clustering is reliable. To the authors' knowledge, this is the first time in the power systems literature that the sample robustness of the clustering has been tested.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Accepted manuscript, pdf, 714.9KB, Terms of use)
-
- Publisher copy:
- 10.1109/TSG.2015.2409786
Authors
- Publisher:
- Institute of Electrical and Electronics Engineers
- Journal:
- IEEE Transactions on Smart Grid More from this journal
- Volume:
- 7
- Issue:
- 1
- Pages:
- 136-144
- Publication date:
- 2015-03-18
- Acceptance date:
- 2015-03-02
- DOI:
- EISSN:
-
1949-3061
- ISSN:
-
1949-3053
- Keywords:
- Pubs id:
-
pubs:516186
- UUID:
-
uuid:1ce37cae-002f-4620-8acc-d6c8a8dbbdfe
- Local pid:
-
pubs:516186
- Source identifiers:
-
516186
- Deposit date:
-
2018-05-18
Terms of use
- Copyright holder:
- Institute of Electrical and Electronics Engineers
- Copyright date:
- 2015
- Notes:
- © Copyright 2015 IEEE. This is the accepted manuscript version of the article. The final version is available online from IEEE at: https://doi.org/10.1109/TSG.2015.2409786
If you are the owner of this record, you can report an update to it here: Report update to this record