Journal article
Full spectrum fitting with photometry in PPXF: stellar population versus dynamical masses, non-parametric star formation history and metallicity for 3200 LEGA-C galaxies at redshift z ≈ 0.8
- Abstract:
-
I introduce some improvements to the PPXF method, which measures the stellar and gas kinematics, star formation history (SFH) and chemical composition of galaxies. I describe the new optimization algorithm that PPXF uses and the changes I made to fit both spectra and photometry simultaneously. I apply the updated PPXF method to a sample of 3200 galaxies at redshift 0.6 < z < 1 (median z = 0.76, stellar mass M∗ 3 × 1010 M), using spectroscopy from the LEGA-C survey (DR3) and 28-bands photometry from two different sources. I compare the masses from new JAM dynamical models with the PPXF stellar population M∗ and show the latter are more reliable than previous estimates. I use three differentstellar population synthesis(SPS) modelsin PPXF and both photometric sources. I confirm the main trend of the galaxies’ global ages and metallicity [M/H] with stellar velocity dispersion σ∗ (or central density), but I also find that [M/H] depends on age at fixed σ∗. The SFHsreveal a sharp transition from star formation to quenching for galaxies with lg(σ∗/km s−1) 2.3 (σ∗ 200 km s−1), or average mass density within 1 kpc lg(JAM 1 /Mkpc−2) 9.9 (JAM 1 7.9 × 109 M kpc−2), or with [M/H] −0.1, or with Sersic index lg nSer 0.5 (nSer 3.2). However, the transition is smoother as a function of M∗. These results are consistent for two SPS models and both photometric sources, but they differ significantly from the third SPS model, which demonstrates the importance of comparing model assumptions.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 9.5MB, Terms of use)
-
- Publisher copy:
- 10.1093/mnras/stad2597
Authors
- Publisher:
- Oxford University Press
- Journal:
- Monthly Notices of the Royal Astronomical Society More from this journal
- Volume:
- 526
- Issue:
- 3
- Pages:
- 3273-3300
- Publication date:
- 2023-08-31
- Acceptance date:
- 2023-08-17
- DOI:
- EISSN:
-
1365-2966
- ISSN:
-
0035-8711
- Language:
-
English
- Keywords:
- Pubs id:
-
1526437
- Local pid:
-
pubs:1526437
- Deposit date:
-
2023-09-13
Terms of use
- Copyright holder:
- Michele Cappellari
- Copyright date:
- 2023
- Rights statement:
- © 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record