Journal article
Constraining the major merger history of z ∼ 3–9 galaxies using JADES: dominant in situ star formation
- Abstract:
- We present a comprehensive analysis of galaxy close-pair fractions and major merger rates to evaluate the importance of mergers in the hierarchical growth of galaxies over cosmic time. This study focuses on the previously poorly understood redshift range of using JADES observations. Our mass-complete sample includes primary galaxies with stellar masses of , having major companions (mass ratio ) selected by pkpc projected separation and redshift proximity criteria. Pair fractions are measured using a statistically robust method incorporating photometric redshift posteriors and available spectroscopic data. The pair fraction evolves with redshift and shows dependence on the stellar mass: at there is an increase up to , followed by a turnover, while at higher stellar masses there is a flattening and weak decline with increasing redshift. Similarly, the derived galaxy major merger rate increases and flattens beyond to per galaxy, showing a weak scaling with stellar mass, driven by the evolution of the galaxy stellar mass function. A comparison between the cumulative mass accretion from major mergers and the mass assembled through star formation indicates that major mergers contribute approximately to the total mass growth over the studied redshift range, which is in agreement with the ex situ mass fraction estimated from our simple numerical model. These results highlight that major mergers contribute little to the direct stellar mass growth compared to in situ star formation but could still play an indirect role by driving star formation itself.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 4.2MB, Terms of use)
-
- Publisher copy:
- 10.1093/mnras/staf813
Authors
+ National Aeronautics and Space Administration
More from this funder
- Funder identifier:
- https://ror.org/027ka1x80
+ Science and Technology Facilities Council
More from this funder
- Funder identifier:
- https://ror.org/057g20z61
- Publisher:
- Oxford University Press
- Journal:
- Monthly Notices of the Royal Astronomical Society More from this journal
- Volume:
- 540
- Issue:
- 3
- Pages:
- 2146-2175
- Publication date:
- 2025-05-19
- Acceptance date:
- 2025-05-12
- DOI:
- EISSN:
-
1365-2966
- ISSN:
-
0035-8711
- Language:
-
English
- Keywords:
- Source identifiers:
-
3012851
- Deposit date:
-
2025-06-09
This ORA record was generated from metadata provided by an external service. It has not been edited by the ORA Team.
If you are the owner of this record, you can report an update to it here: Report update to this record