Journal article
Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport
- Abstract:
-
The knowledge of minority and majority charge carrier properties enables controlling the performance of solar cells, transistors, detectors, sensors, and LEDs. Here, we developed the constant light induced magneto transport method which resolves electron and hole mobility, lifetime, diffusion coefficient and length, and quasi-Fermi level splitting. We demonstrate the implication of the constant light induced magneto transport for silicon and metal halide perovskite films. We resolve the transport properties of electrons and holes predicting the material’s effectiveness for solar cell application without making the full device. The accessibility of fourteen material parameters paves the way for in-depth exploration of causal mechanisms limiting the efficiency and functionality of material structures. To demonstrate broad applicability, we further characterized twelve materials with drift mobilities spanning from 10–3 to 103 cm2V–1s–1 and lifetimes varying between 10–9 and 10–3 seconds. The universality of our method its potential to advance optoelectronic devices in various technological fields.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.4MB, Terms of use)
-
- Publisher copy:
- 10.1038/s41467-023-44418-1
Authors
- Publisher:
- Springer Nature
- Journal:
- Nature Communications More from this journal
- Volume:
- 15
- Issue:
- 1
- Article number:
- 316
- Publication date:
- 2024-01-05
- Acceptance date:
- 2023-12-13
- DOI:
- EISSN:
-
2041-1723
- Pmid:
-
38182589
- Language:
-
English
- Keywords:
- Pubs id:
-
1597420
- Local pid:
-
pubs:1597420
- Deposit date:
-
2024-01-16
Terms of use
- Copyright holder:
- Musiienko et al.
- Copyright date:
- 2024
- Rights statement:
- Copyright © 2024, The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record