Journal article icon

Journal article

Evaluation of the precision of the Plasmodium knowlesi growth inhibition assay for Plasmodium vivax Duffy-binding protein-based malaria vaccine development

Abstract:
Recent data indicate increasing disease burden and importance of Plasmodium vivax (Pv) malaria. A robust assay will be essential for blood-stage Pv vaccine development. Results of the in vitro growth inhibition assay (GIA) with transgenic P. knowlesi (Pk) parasites expressing the Pv Duffy-binding protein region II (PvDBPII) correlate with in vivo protection in the first PvDBPII controlled human malaria infection (CHMI) trials, making the PkGIA an ideal selection tool once the precision of the assay is defined. To determine the precision in percentage of inhibition in GIA (%GIA) and in GIA50 (antibody concentration that gave 50 %GIA), ten GIAs with transgenic Pk parasites were conducted with four different anti-PvDBPII human monoclonal antibodies (mAbs) at concentrations of 0.016 to 2 mg/mL, and three GIAs with eighty anti-PvDBPII human polyclonal antibodies (pAbs) at 10 mg/mL. A significant assay-to-assay variation was observed, and the analysis revealed a standard deviation (SD) of 13.1 in the mAb and 5.94 in the pAb dataset for %GIA, with a LogGIA50 SD of 0.299 (for mAbs). Moreover, the ninety-five percent confidence interval (95 %CI) for %GIA or GIA50 in repeat assays was calculated in this investigation. The error range determined in this study will help researchers to compare PkGIA results from different assays and studies appropriately, thus supporting the development of future blood-stage malaria vaccine candidates, specifically second-generation PvDBPII-based formulations.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1016/j.vaccine.2024.04.073

Authors


More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Biochemistry
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Paediatrics
Role:
Author
ORCID:
0009-0008-6883-2803
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Biochemistry
Role:
Author
ORCID:
0000-0002-1611-7655
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Biochemistry
Role:
Author
ORCID:
0000-0003-4135-6452
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Biochemistry
Oxford college:
Oriel College
Role:
Author
ORCID:
0000-0002-8517-9147


More from this funder
Funder identifier:
https://ror.org/02qwkrw10
Grant:
Z99 AI999999


Publisher:
Elsevier
Journal:
Vaccine More from this journal
Volume:
42
Issue:
16
Pages:
3621-3629
Place of publication:
Netherlands
Publication date:
2024-05-03
Acceptance date:
2024-04-23
DOI:
EISSN:
1873-2518
ISSN:
0264-410X
Pmid:
38704253

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP