Journal article icon

Journal article

A sub-micron resolution, bunch-by-bunch beam trajectory feedback system and its application to reducing wakefield effects in single-pass beamline

Abstract:
A high-precision intra-bunch-train beam orbit feedback correction system has been developed and tested in the ATF2 beamline of the Accelerator Test Facility at the High Energy Accelerator Research Organization in Japan. The system uses the vertical position of the bunch measured at two beam position monitors (BPMs) to calculate a pair of kicks which are applied to the next bunch using two upstream kickers, thereby correcting both the vertical position and trajectory angle. Using trains of two electron bunches separated in time by 187.6 ns, the system was optimised so as to stabilize the beam offset at the feedback BPMs to better than 350 nm, yielding a local trajectory angle correction to within 250 nrad. The quality of the correction was verified using three downstream witness BPMs and the results were found to be in agreement with the predictions of a linear lattice model used to propagate the beam trajectory from the feedback region. This same model predicts a corrected beam jitter of c. 1 nm at the focal point of the accelerator. Measurements with a beam size monitor at this location demonstrate that reducing the trajectory jitter of the beam by a factor of 4 also reduces the increase in the measured beam size as a function of beam charge by a factor of c. 1.6.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1088/1748-0221/16/01/P01005

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Particle Physics
Role:
Author
ORCID:
0000-0001-6856-3676
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Particle Physics
Oxford college:
Jesus College
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Particle Physics
Role:
Author
ORCID:
0000-0003-1248-8608


Publisher:
IOP Publishing
Journal:
Journal of Instrumentation More from this journal
Volume:
16
Pages:
P01005
Publication date:
2022-01-11
Acceptance date:
2020-11-02
DOI:
EISSN:
1748-0221


Language:
English
Keywords:
Pubs id:
1129614
Local pid:
pubs:1129614
Deposit date:
2020-12-11

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP