Thesis
Sum-free sets and arithmetic notions of structure in combinatorics
- Abstract:
- This thesis is concerned with four problems in additive combinatorics, each of which studies a certain notion of arithmetic structure and which properties of a general additive set, such as its density or the structure of the group in which it is contained, imply that it necessarily exhibits such structure. One of the main results of this thesis shows that any set A of N positive integers contains a subset A′ ⊂ A of size |A′| ⩾ N/3+ c log log N which is sum-free, meaning that there are no three x, y, z ∈ A′ with x + y = z. This answers a longstanding problem of Erdos from 1965.
Actions
- DOI:
- Type of award:
- DPhil
- Awarding institution:
- University of Oxford
- Language:
-
English
- Keywords:
- Deposit date:
-
2025-08-31
Terms of use
- Copyright holder:
- Benjamin Bedert
- Copyright date:
- 2025
If you are the owner of this record, you can report an update to it here: Report update to this record