Journal article
Measurement of the flux-averaged inclusive charged-current electron neutrino and antineutrino cross section on argon using the NuMI beam and the MicroBooNE detector
- Abstract:
- We present a measurement of the combined νe+ν¯e flux-averaged charged-current inclusive cross section on argon using data from the MicroBooNE liquid argon time projection chamber (lartpc) at Fermilab. Using the off-axis flux from the NuMI beam, MicroBooNE has reconstructed 214 candidate νe+ν¯e interactions with an estimated exposure of 2.4×1020 protons on target. Given the estimated purity of 38.6%, this implies the observation of 80 νe+ν¯e events in argon, the largest such sample to date. The analysis includes the first demonstration of a fully automated application of a dE/dx-based particle discrimination technique of electron- and photon-induced showers in a lartpc neutrino detector. The main background for this first νe analysis is cosmic ray contamination. Significantly higher purity is expected in underground detectors, as well as with next-generation reconstruction algorithms. We measure the νe+ν¯e flux-averaged charged-current total cross section to be 6.84±1.51(stat)±2.33(sys)×10-39 cm2/nucleon, for neutrino energies above 250 MeV and an average neutrino flux energy of 905 MeV when this threshold is applied. The measurement is sensitive to neutrino events where the final state electron momentum is above 48 MeV/c, includes the entire angular phase space of the electron, and is in agreement with the theoretical predictions from genie and nuwro. This measurement is also the first demonstration of electron-neutrino reconstruction in a surface lartpc in the presence of cosmic-ray backgrounds, which will be a crucial task for surface experiments like those that comprise the short-baseline neutrino program at Fermilab.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, 1.6MB, Terms of use)
-
- Publisher copy:
- 10.1103/PhysRevD.104.052002
- Publisher:
- American Physical Society
- Journal:
- Physical Review D More from this journal
- Volume:
- 104
- Issue:
- 5
- Article number:
- 52002
- Publication date:
- 2021-09-08
- Acceptance date:
- 2021-06-21
- DOI:
- EISSN:
-
2470-0029
- ISSN:
-
2470-0010
- Language:
-
English
- Keywords:
- Pubs id:
-
1195457
- Local pid:
-
pubs:1195457
- Deposit date:
-
2022-01-11
Terms of use
- Copyright holder:
- Abratenko et al.
- Copyright date:
- 2021
- Rights statement:
- Copyright © 2021 The Author(s). Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record