Journal article
Insights into the structure and self-assembly of organic-semiconductor/quantum-dot blends
- Abstract:
-
Controlling the dispersibility of crystalline inorganic quantum dots (QD) within organic-QD nanocomposite films is critical for a wide range of optoelectronic devices. A promising way to control nanoscale structure in these nanocomposites is via the use of appropriate organic ligands on the QD, which help to compatibilize them with the organic host, both electronically and structurally. Here, using combined small-angle X-ray and neutron scattering, the authors demonstrate and quantify the incorporation of such a compatibilizing, electronically active, organic semiconductor ligand species into the native oleic acid ligand envelope of lead sulphide, QDs, and how this ligand loading may be easily controlled. Further more, in situ grazing incidence wide/small angle X-ray scattering demonstrate how QD ligand surface chemistry has a pronounced effect on the self-assembly of the nanocomposite film in terms of both small-molecule crystallization and QD dispersion versus ordering/aggregation. The approach demonstrated here shows the important role which the degree of incorporation of an active ligand, closely related in chemical structure to the host small-molecule organic matrix, plays in both the self-assembly of the QD and small-molecule components and in determining the final optoelectronic properties of the system.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.6MB, Terms of use)
-
- Publisher copy:
- 10.1002/adfm.202109252
Authors
- Publisher:
- Wiley
- Journal:
- Advanced Functional Materials More from this journal
- Volume:
- 32
- Issue:
- 13
- Article number:
- 2109252
- Publication date:
- 2021-12-07
- DOI:
- EISSN:
-
1616-3028
- ISSN:
-
1616-301X
- Language:
-
English
- Keywords:
- Pubs id:
-
1223293
- Local pid:
-
pubs:1223293
- Deposit date:
-
2023-04-05
Terms of use
- Copyright holder:
- Toolan et al.
- Copyright date:
- 2021
- Rights statement:
- © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
If you are the owner of this record, you can report an update to it here: Report update to this record