Journal article icon

Journal article

Impact of Cosmic Ray-driven Outflows on Ly α Emission in Cosmological Simulations

Abstract:
Cosmic ray (CR) feedback has been proposed as a powerful mechanism for driving warm gas outflows in galaxies. We use cosmological magnetohydrodynamic simulations to investigate the impact of CR feedback on neutral hydrogen (H i) in a 1011 M⊙ dark matter halo at 2 < z < 4. To this end, we postprocess the simulations with ionizing radiative transfer and perform Monte Carlo Lyman-α (Lyα) transfer calculations. CR feedback reduces H i column densities around young stars, thereby allowing more Lyα photons to escape and consequently offering a better match to the Lyα luminosities of observed Lyα emitters. Although galaxies with CR-driven outflows have more extended H i in the circumgalactic medium, two Lyα line properties sensitive to optical depth and gas kinematic—the location of the red peak relative to the Lyα line center in velocity space (vred) and relative strength of the blue-to-red peaks (B/R)—cannot distinguish between the CR-driven and non-CR simulations. This is because Lyα photons propagate preferentially along low H i density channels created by the ionizing radiation, thereby limiting the scattering with volume-filling H i. In contrast, the observed low flux ratios between the valley and peak and the surface brightness profiles are better reproduced in the model with CR-driven outflows because the Lyα photons interact more before escaping, rather than being destroyed by dust as is the case in the non-CR simulation. We discuss the potential cause of the paucity of sightlines in simulations that exhibit prominent red peaks and large vred, which may require the presence of more volume-filling H i.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.3847/1538-4357/ae00c5

Authors


More by this author
Role:
Author
ORCID:
0000-0002-3950-3997
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Astrophysics
Role:
Author
ORCID:
0000-0002-8140-0422
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Astrophysics
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Astrophysics
Role:
Author
More by this author
Role:
Author
ORCID:
0000-0002-7534-8314


Publisher:
American Astronomical Society
Journal:
The Astrophysical Journal More from this journal
Volume:
992
Issue:
1
Article number:
67
Publication date:
2025-10-07
Acceptance date:
2025-08-27
DOI:
EISSN:
1538-4357
ISSN:
0004637X and 0004-637X


Language:
English
Keywords:
Source identifiers:
3346708
Deposit date:
2025-10-07
This ORA record was generated from metadata provided by an external service. It has not been edited by the ORA Team.

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP