Journal article
Heterogeneous tissue characterization using ultrasound: a comparison of fractal analysis backscatter models on liver tumors
- Abstract:
- Assessment of tumor tissue heterogeneity via ultrasound has recently been suggested as a method for predicting early response to treatment. The ultrasound backscattering characteristics can assist in better understanding the tumor texture by highlighting the local concentration and spatial arrangement of tissue scatterers. However, it is challenging to quantify the various tissue heterogeneities ranging from fine to coarse of the echo envelope peaks in tumor texture. Local parametric fractal features extracted via maximum likelihood estimation from five well-known statistical model families are evaluated for the purpose of ultrasound tissue characterization. The fractal dimension (self-similarity measure) was used to characterize the spatial distribution of scatterers, whereas the lacunarity (sparsity measure) was applied to determine scatterer number density. Performance was assessed based on 608 cross-sectional clinical ultrasound radiofrequency images of liver tumors (230 and 378 representing respondent and non-respondent cases, respectively). Cross-validation via leave-one-tumor-out and with different k-fold methodologies using a Bayesian classifier was employed for validation. The fractal properties of the backscattered echoes based on the Nakagami model (Nkg) and its extend four-parameter Nakagami-generalized inverse Gaussian (NIG) distribution achieved best results-with nearly similar performance-in characterizing liver tumor tissue. The accuracy, sensitivity and specificity of Nkg/NIG were 85.6%/86.3%, 94.0%/96.0% and 73.0%/71.0%, respectively. Other statistical models, such as the Rician, Rayleigh and K-distribution, were found to not be as effective in characterizing subtle changes in tissue texture as an indication of response to treatment. Employing the most relevant and practical statistical model could have potential consequences for the design of an early and effective clinical therapy.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Accepted manuscript, pdf, 806.0KB, Terms of use)
-
- Publisher copy:
- 10.1016/j.ultrasmedbio.2016.02.007
Authors
+ Engineering and Physical Sciences Research Council and Wellcome Trust
More from this funder
- Grant:
- WT 088877/z/09/z
- Publisher:
- Elsevier
- Journal:
- Ultrasound in Medicine and Biology More from this journal
- Volume:
- 42
- Issue:
- 7
- Pages:
- 1612-1626
- Publication date:
- 2016-04-05
- Acceptance date:
- 2016-02-11
- DOI:
- EISSN:
-
1879-291X
- ISSN:
-
0301-5629
- Language:
-
English
- Keywords:
- Pubs id:
-
pubs:616702
- UUID:
-
uuid:0e700881-3864-4a0d-953e-3bfd677e8d4e
- Local pid:
-
pubs:616702
- Source identifiers:
-
616702
- Deposit date:
-
2016-06-07
Terms of use
- Copyright holder:
- © 2016 World Federation for Ultrasound in Medicine & Biology Printed in the USA All rights reserved
- Copyright date:
- 2016
- Notes:
- This is the author accepted manuscript following peer review version of the article. The final version is available online from Elsevier at: 10.1016/j.ultrasmedbio.2016.02.007
If you are the owner of this record, you can report an update to it here: Report update to this record