Journal article
Room-temperature photoluminescence mediated by sulfur vacancies in 2D molybdenum disulfide
- Abstract:
- Atomic defects in monolayer transition metal dichalcogenides (TMDs) such as chalcogen vacancies significantly affect their properties. In this work, we provide a reproducible and facile strategy to rationally induce chalcogen vacancies in monolayer MoS2 by annealing at 600 °C in an argon/hydrogen (95%/5%) atmosphere. Synchrotron X-ray photoelectron spectroscopy shows that a Mo 3d5/2 core peak at 230.1 eV emerges in the annealed MoS2 associated with nonstoichiometric MoSx (0 < x < 2), and Raman spectroscopy shows an enhancement of the ∼380 cm–1 peak that is attributed to sulfur vacancies. At sulfur vacancy densities of ∼1.8 × 1014 cm–2, we observe a defect peak at ∼1.72 eV (referred to as LXD) at room temperature in the photoluminescence (PL) spectrum. The LXD peak is attributed to excitons trapped at defect-induced in-gap states and is typically observed only at low temperatures (≤77 K). Time-resolved PL measurements reveal that the lifetime of defect-mediated LXD emission is longer than that of band edge excitons, both at room and low temperatures (∼2.44 ns at 8 K). The LXD peak can be suppressed by annealing the defective MoS2 in sulfur vapor, which indicates that it is possible to passivate the vacancies. Our results provide insights into how excitonic and defect-mediated PL emissions in MoS2 are influenced by sulfur vacancies at room and low temperatures.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 4.8MB, Terms of use)
-
- Publisher copy:
- 10.1021/acsnano.3c02103
Authors
- Publisher:
- American Chemical Society
- Journal:
- ACS Nano More from this journal
- Volume:
- 17
- Issue:
- 14
- Pages:
- 13545–13553
- Publication date:
- 2023-07-07
- Acceptance date:
- 2023-07-03
- DOI:
- EISSN:
-
1936-086X
- ISSN:
-
1936-0851
- Language:
-
English
- Keywords:
- Pubs id:
-
1491275
- Local pid:
-
pubs:1491275
- Deposit date:
-
2023-07-10
Terms of use
- Copyright holder:
- Zhu et al.
- Copyright date:
- 2023
- Rights statement:
- © 2023 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record