Thesis icon

Thesis

Analysis and management of temperature fields in F1 cars

Abstract:

This thesis investigates the broad subject of thermal management problems currently encountered in Formula One race car design.

A computationally economical tool, based on linear superposition, for predicting the temperature field arising from a set of thermal and inlet velocity boundary conditions was developed. Using a set of base analyses, the research showed that it is possible to superpose and scale these results in order to predict the temperature field for differing sets of boundary conditions. This method was shown to have a significant speed advantage over typical computational simulations. An experimental facility was designed and built to provide validation for aspects of the linear superposition approach.

A method of measuring the cylinder wall heat flux has been developed using thin film gauge technology. The resulting sensor was designed to fit the mounting of existing instrumentation in order to avoid requiring large scale modifications to existing test facilities. The design makes use of modern rapid prototyping techniques in order to meet this mounting requirement and to provide a novel solution to routing the signal from the thin film gauge.

In addition, the research investigated a method for predicting the cylinder wall temperature in real-time. The cylinder wall is subject to heat fluxes from in-cylinder gases during the engine cycle on the inner face and the effect of the coolant jacket on the outer face. Two separate methods were used to process these thermal boundary conditions respectively, before being superposed in order to form the whole solution. The computation time of the method is characterised in order to demonstrate its feasibility for real-time operation.

Actions


Access Document


Files:

Authors


More by this author
Division:
MPLS
Department:
Engineering Science
Department:
Engineering Science
Role:
Author

Contributors

Role:
Supervisor



DOI:
Type of award:
DPhil
Level of award:
Doctoral
Awarding institution:
University of Oxford


Language:
English
Keywords:
Subjects:
UUID:
uuid:0de2a35c-a781-4211-9399-c72ab3d8ad18
Deposit date:
2018-03-16

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP