Journal article
Optical+Near-IR Analysis of a Newly Confirmed Einstein Ring at z ∼ 1 from the Kilo-Degree Survey: Dark Matter Fraction, Total and Dark Matter Density Slope, and Initial Mass Function * * Based on observations with OmegaCam@VST, VIRCAM@VISTA, HAWK-I, and XSHOOTER@VLT (Prog. ID: 107.22S8)
- Abstract:
- We report the spectroscopic confirmation of a bright blue Einstein ring in the Kilo-Degree Survey (KiDS) footprint: the Einstein “blue eye.” Spectroscopic data from X-Shooter at the Very Large Telescope (VLT) show that the lens is a typical early-type galaxy (ETG) at zl = 0.9906, while the background source is a Lyα emitter at zs = 2.823. The reference lens modeling was performed on a high-resolution Y-band adaptive-optics image from HAWK-I at VLT. Assuming a singular isothermal ellipsoid total mass density profile, we inferred an Einstein radius REin = 10.47 ± 0.06 kpc. The average slope of the total mass density inside the Einstein radius, as determined by a joint analysis of lensing and isotropic Jeans equations, is γtot=2.14−0.07+0.06 , showing no systematic deviation from the slopes of lower-redshift galaxies. This can be the evidence of ETGs developing through dry mergers plus moderate dissipationless accretion. Stellar population analysis with eight-band (griZYJHKs) photometries from KiDS and VIKING shows that the total stellar mass of the lens is M* = (3.95 ± 0.35) × 1011 M⊙ (Salpeter initial mass function (IMF)), implying a dark matter fraction inside the effective radius of fDM = 0.307 ± 0.151. We finally explored the dark matter halo slope and found a strong degeneracy with the dynamic stellar mass. Dark matter adiabatic contraction is needed to explain the posterior distribution of the slope, unless an IMF heavier than Salpeter is assumed.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 7.8MB, Terms of use)
-
- Publisher copy:
- 10.3847/2041-8213/ade680
Authors
- Publisher:
- American Astronomical Society
- Journal:
- The Astrophysical Journal Letters More from this journal
- Volume:
- 987
- Issue:
- 2
- Article number:
- L31
- Publication date:
- 2025-07-04
- Acceptance date:
- 2025-06-17
- DOI:
- EISSN:
-
2041-8213
- ISSN:
-
2041-8205
- Language:
-
English
- Keywords:
- Source identifiers:
-
3088121
- Deposit date:
-
2025-07-05
This ORA record was generated from metadata provided by an external service. It has not been edited by the ORA Team.
If you are the owner of this record, you can report an update to it here: Report update to this record