Journal article icon

Journal article

Cs2InAgCl6: A new lead-free halide double perovskite with direct band gap.

Abstract:
A2BB'X6 halide double perovskites based on bismuth and silver have recently been proposed as potential environmentally friendly alternatives to lead-based hybrid halide perovskites. In particular, Cs2BiAgX6 (X = Cl, Br) have been synthesized and found to exhibit band gaps in the visible range. However, the band gaps of these compounds are indirect, which is not ideal for applications in thin film photovoltaics. Here, we propose a new class of halide double perovskites, where the B(3+) and B(+) cations are In(3+) and Ag(+), respectively. Our first-principles calculations indicate that the hypothetical compounds Cs2InAgX6 (X = Cl, Br, I) should exhibit direct band gaps between the visible (I) and the ultraviolet (Cl). Based on these predictions, we attempt to synthesize Cs2InAgCl6 and Cs2InAgBr6, and we succeed to form the hitherto unknown double perovskite Cs2InAgCl6. X-ray diffraction yields a double perovskite structure with space group Fm3̅m. The measured band gap is 3.3 eV, and the compound is found to be photosensitive and turns reversibly from white to orange under ultraviolet illumination. We also perform an empirical analysis of the stability of Cs2InAgX6 and their mixed halides based on Goldschmidt's rules, and we find that it should also be possible to form Cs2InAg(Cl1-xBrx)6 for x < 1. The synthesis of mixed halides will open the way to the development of lead-free double perovskites with direct and tunable band gaps.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.1021/acs.jpclett.6b02682

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Materials
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Condensed Matter Physics
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Condensed Matter Physics
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Materials
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Materials
Role:
Author


Publisher:
American Chemical Society
Journal:
Journal of Physical Chemistry Letters More from this journal
Volume:
2017
Issue:
8
Pages:
772-778
Publication date:
2017-01-01
Acceptance date:
2017-01-30
DOI:
EISSN:
1948-7185


Language:
English
Keywords:
Pubs id:
pubs:679238
UUID:
uuid:0d05218a-d7e9-4b3f-9fc0-1db46402a9bb
Local pid:
pubs:679238
Source identifiers:
679238
Deposit date:
2017-02-14

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP