Journal article
Holonomic and perverse logarithmic D-modules
- Abstract:
- We introduce the notion of a holonomic D-module on a smooth (idealized) logarithmic scheme and show that Verdier duality can be extended to this context. In contrast to the classical case, the pushforward of a holonomic module along an open immersion is in general not holonomic. We introduce a “perverse” t-structure on the category of coherent logarithmic D-modules which makes the dualizing functor t-exact on holonomic modules. Conversely this t-exactness characterizes holonomic modules among all coherent logarithmic D-modules. We also introduce logarithmic versions of the Gabber and Kashiwara–Malgrange filtrations.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Accepted manuscript, pdf, 395.2KB, Terms of use)
-
- Publisher copy:
- 10.1016/j.aim.2019.02.016
Authors
- Publisher:
- Elsevier
- Journal:
- Advances in Mathematics More from this journal
- Volume:
- 346
- Pages:
- 510-545
- Publication date:
- 2019-02-14
- Acceptance date:
- 2019-02-04
- DOI:
- EISSN:
-
1090-2082
- ISSN:
-
0001-8708
- Language:
-
English
- Keywords:
- Pubs id:
-
pubs:1037509
- UUID:
-
uuid:0b20f45e-3fdd-4d56-a65b-f986ba7e6c8d
- Local pid:
-
pubs:1037509
- Source identifiers:
-
1037509
- Deposit date:
-
2019-08-09
Terms of use
- Copyright holder:
- Elsevier Inc
- Copyright date:
- 2019
- Rights statement:
- © 2019 Elsevier Inc. All rights reserved.
- Notes:
- This is the accepted manuscript version of the article. The final version is available online from Elsevier at: https://doi.org/10.1016/j.aim.2019.02.016
If you are the owner of this record, you can report an update to it here: Report update to this record