Conference item
The Mondrian kernel
- Abstract:
- We introduce the Mondrian kernel, a fast random feature approximation to the Laplace kernel. It is suitable for both batch and online learning, and admits a fast kernel-width-selection procedure as the random features can be re-used efficiently for all kernel widths. The features are constructed by sampling trees via a Mondrian process [Roy and Teh, 2009], and we highlight the connection to Mondrian forests [Lakshminarayanan et al., 2014], where trees are also sampled via a Mondrian process, but fit independently. This link provides a new insight into the relationship between kernel methods and random forests.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Accepted manuscript, pdf, 650.8KB, Terms of use)
-
(Preview, Supplementary materials, pdf, 260.3KB, Terms of use)
-
- Publication website:
- https://www.auai.org/uai2016/proceedings.php
Authors
- Publisher:
- AUAI Press
- Host title:
- UAI'16: Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence
- Pages:
- 32-41
- Publication date:
- 2016-06-25
- Acceptance date:
- 2016-06-25
- Event title:
- Thirty-Second Conference on Uncertainty in Artificial Intelligence, UAI 2016
- Event location:
- New York City, NY, USA
- Event website:
- https://www.auai.org/uai2016/index.php
- Event start date:
- 2016-06-25
- Event end date:
- 2016-06-29
- ISBN:
- 9780996643115
- Language:
-
English
- Pubs id:
-
pubs:905428
- UUID:
-
uuid:09fb856d-0b03-4c28-89f9-eca5c8aeec48
- Local pid:
-
pubs:905428
- Source identifiers:
-
905428
- Deposit date:
-
2019-02-06
Terms of use
- Copyright holder:
- AUAI Press
- Copyright date:
- 2016
- Rights statement:
- Copyright © 2016 by AUAI Press
- Notes:
- This is the accepted manuscript version of the paper. The final version is available online from AUAI Press at https://www.auai.org/uai2016/proceedings.php
If you are the owner of this record, you can report an update to it here: Report update to this record