Conference item
Heritability estimates on resting state fMRI data using ENIGMA analysis pipeline
- Abstract:
- Big data initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analysis consortium (ENIGMA), combine data collected by independent studies worldwide to achieve more generalizable estimates of effect sizes and more reliable and reproducible outcomes. Such efforts require harmonized image analyses protocols to extract phenotypes consistently. This harmonization is particularly challenging for resting state fMRI due to the wide variability of acquisition protocols and scanner platforms; this leads to site-to-site variance in quality, resolution and temporal signal-to-noise ratio (tSNR). An effective harmonization should provide optimal measures for data of different qualities. We developed a multi-site rsfMRI analysis pipeline to allow research groups around the world to process rsfMRI scans in a harmonized way, to extract consistent and quantitative measurements of connectivity and to perform coordinated statistical tests. We used the single-modality ENIGMA rsfMRI preprocessing pipeline based on modelfree Marchenko-Pastur PCA based denoising to verify and replicate resting state network heritability estimates. We analyzed two independent cohorts, GOBS (Genetics of Brain Structure) and HCP (the Human Connectome Project), which collected data using conventional and connectomics oriented fMRI protocols, respectively. We used seed-based connectivity and dual-regression approaches to show that the rsfMRI signal is consistently heritable across twenty major functional network measures. Heritability values of 20-40% were observed across both cohorts.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.0MB, Terms of use)
-
- Publisher copy:
- 10.1142/9789813235533_0029
Authors
- Publisher:
- World Scientific Publishing
- Host title:
- Biocomputing 2018: Proceedings of the Pacific Symposium
- Journal:
- Biocomputing More from this journal
- Volume:
- 23
- Pages:
- 307-318
- Publication date:
- 2018-01-01
- Acceptance date:
- 2017-12-01
- Event location:
- Kohala Coast, Hawaii
- DOI:
- ISSN:
-
2335-6936
- Pmid:
-
29218892
- ISBN:
- 9789813235526
- Keywords:
- Pubs id:
-
pubs:908835
- UUID:
-
uuid:0919ea6d-188e-4cac-9608-5516042e0f7f
- Local pid:
-
pubs:908835
- Source identifiers:
-
908835
- Deposit date:
-
2018-11-19
Terms of use
- Copyright holder:
- Adhikari et al
- Copyright date:
- 2018
- Notes:
-
© 2017 The Authors. This is a conference paper presented at Pacific Symposium on Biocomputing (PSB) 2018, 3–7 January 2018 in Kohala Coast, Hawaii.
Open Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record