Journal article icon

Journal article

Conjectures on Bridgeland stability for Fukaya categories of Calabi-Yau manifolds, special Lagrangians, and Lagrangian mean curvature flow

Abstract:

Let $M$ be a Calabi-Yau $m$-fold, and consider compact, graded Lagrangians $L$ in $M$. Thomas and Yau math.DG/0104196, math.DG/0104197 conjectured that there should be a notion of "stability" for such $L$, and that if $L$ is stable then Lagrangian mean curvature flow $\{L^t:t\in[0,\infty)\}$ with $L^0=L$ should exist for all time, and $L^\infty=\lim_{t\to\infty}L^t$ should be the unique special Lagrangian in the Hamiltonian isotopy class of $L$. This paper is an attempt to update the Thomas-Y...

Expand abstract
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Mathematical Institute
Role:
Author
Publisher:
European Mathematical Society
Journal:
EMS Surveys in Mathematical Sciences More from this journal
Volume:
2
Issue:
1
Pages:
1–62
Publication date:
2015-01-01
EISSN:
2308-216X
ISSN:
2308-2151
Keywords:
Pubs id:
pubs:447404
UUID:
uuid:08e640d6-1cd5-48f9-8c77-7f6a9b50c0f9
Local pid:
pubs:447404
Source identifiers:
447404
Deposit date:
2015-05-04

Terms of use


Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP