Journal article icon

Journal article

Probing Saturn's tropospheric cloud with Cassini/VIMS

Abstract:
In its decade of operation the Cassini mission has allowed us to look deep into Saturn’s atmosphere and investigate the processes occurring below its enshrouding haze. We use Visual and Infrared Mapping Spectrometer (VIMS) 4.6—5.2 µm data from early in the mission to investigate the location and properties of Saturn’s cloud structure between 0.6 and 5 bars. We average nightside spectra from 2006 over latitude circles and model the spectral limb darkening using the NEMESIS radiative transfer and retrieval tool. We present our best-fit deep cloud model for latitudes −40◦ < λ < 50◦ , along with retrieved abundances for NH3, PH3 and AsH3. We find an increase in NH3 abundance at the equator, a cloud base at ∼2.3 bar and no evidence for cloud particles with strong absorption features in the 4.6—5.2 µm wavelength range, all of which are consistent with previous work. Non-scattering cloud models assuming a composition of either NH3 or NH4SH, with a scattering haze overlying, fit limb darkening curves and spectra at all latitudes well; the retrieved optical depth for the tropospheric haze is decreased in the northern (winter) hemisphere, implying that the haze has a photochemical origin. Our ability to test this hypothesis by examining spectra at different seasons is restricted by the varying geometry of VIMS observations over the life of the mission, and the appearance of the Saturn storm towards the end of 2010.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1016/j.icarus.2016.01.013

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Atmos Ocean & Planet Physics
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Atmos Ocean & Planet Physics
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Atmos Ocean & Planet Physics
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Atmos Ocean & Planet Physics
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Atmos Ocean & Planet Physics
Role:
Author


Publisher:
Elsevier
Journal:
Icarus More from this journal
Volume:
271
Pages:
400-417
Publication date:
2016-01-19
DOI:
ISSN:
0019-1035


Pubs id:
pubs:584310
UUID:
uuid:08086a51-9a23-4bb4-b9d6-2ba30837369f
Local pid:
pubs:584310
Source identifiers:
584310
Deposit date:
2016-01-14

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP