Journal article
Applications of a Gaussian process framework for modelling of high-resolution exoplanet spectra
- Abstract:
- Observations of exoplanet atmospheres in high resolution have the potential to resolve individual planetary absorption lines, despite the issues associated with ground-based observations. The removal of contaminating stellar and telluric absorption features is one of the most sensitive steps required to reveal the planetary spectrum and, while many different detrending methods exist, it remains difficult to directly compare the performance and efficacy of these methods. Additionally, though the standard cross-correlation method enables robust detection of specific atmospheric species, it only probes for features that are expected a priori. Here, we present a novel methodology using Gaussian process (GP) regression to directly model the components of high-resolution spectra, which partially addresses these issues. We use two archival CRyogenic Infra-Red Echelle Spectrograph (CRIRES)/Very Large Telescope (VLT) data sets as test cases, observations of the hot Jupiters HD 189733 b and 51 Pegasi b, recovering injected signals with average line contrast ratios of ∼4.37 × 10-3 and ∼1.39 × 10-3, and planet radial velocities ΔKp = 1.45 ± 1.53 km s-1 and ΔKp = 0.12 ± 0.12 km s-1 from the injection velocities, respectively. In addition, we demonstrate an application of the GP method to assess the impact of the detrending process on the planetary spectrum, by implementing injection-recovery tests. We show that standard detrending methods used in the literature negatively affect the amplitudes of absorption features in particular, which has the potential to render retrieval analyses inaccurate. Finally, we discuss possible limiting factors for the non-detections using this method, likely to be remedied by higher signal-to-noise data.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.6MB, Terms of use)
-
- Publisher copy:
- 10.1093/mnras/stac662
Authors
- Publisher:
- Oxford University Press
- Journal:
- Monthly Notices of the Royal Astronomical Society More from this journal
- Volume:
- 512
- Issue:
- 2
- Pages:
- 2604-2617
- Publication date:
- 2022-03-12
- Acceptance date:
- 2022-03-02
- DOI:
- EISSN:
-
1365-2966
- ISSN:
-
0035-8711
- Language:
-
English
- Keywords:
- Pubs id:
-
1253469
- Local pid:
-
pubs:1253469
- Deposit date:
-
2023-07-04
Terms of use
- Copyright holder:
- Meech et al
- Copyright date:
- 2022
- Rights statement:
- © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record