Journal article
Invisible ship tracks show large cloud sensitivity to aerosol
- Abstract:
- Cloud reflectivity is sensitive to atmospheric aerosol concentrations because aerosols provide the condensation nuclei on which water condenses1. Increased aerosol concentrations due to human activity affect droplet number concentration, liquid water and cloud fraction2, but these changes are subject to large uncertainties3. Ship tracks, long lines of polluted clouds that are visible in satellite images, are one of the main tools for quantifying aerosol–cloud interactions4. However, only a small fraction of the clouds polluted by shipping show ship tracks5,6. Here we show that even when no ship tracks are visible in satellite images, aerosol emissions change cloud properties substantially. We develop a new method to quantify the effect of shipping on all clouds, showing a cloud droplet number increase and a more positive liquid water response when there are no visible tracks. We directly detect shipping-induced cloud property changes in the trade cumulus regions of the Atlantic, which are known to display almost no visible tracks. Our results indicate that previous studies of ship tracks were suffering from selection biases by focusing only on visible tracks from satellite imagery. The strong liquid water path response we find translates to a larger aerosol cooling effect on the climate, potentially masking a higher climate sensitivity than observed temperature trends would otherwise suggest.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 9.4MB, Terms of use)
-
- Publisher copy:
- 10.1038/s41586-022-05122-0
Authors
- Publisher:
- Springer Nature
- Journal:
- Nature More from this journal
- Volume:
- 610
- Issue:
- 7930
- Pages:
- 101–106
- Publication date:
- 2022-10-05
- Acceptance date:
- 2022-07-19
- DOI:
- EISSN:
-
1476-4687
- ISSN:
-
0028-0836
- Language:
-
English
- Keywords:
- Pubs id:
-
1279975
- Local pid:
-
pubs:1279975
- Deposit date:
-
2022-09-27
Terms of use
- Copyright holder:
- Manshausen et al.
- Copyright date:
- 2022
- Rights statement:
- ©2022 The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record