Journal article
Quaternary dynamics and plasticity underlie small heat shock protein chaperone function.
- Abstract:
- Small Heat Shock Proteins (sHSPs) are a diverse family of molecular chaperones that prevent protein aggregation by binding clients destabilized during cellular stress. Here we probe the architecture and dynamics of complexes formed between an oligomeric sHSP and client by employing unique mass spectrometry strategies. We observe over 300 different stoichiometries of interaction, demonstrating that an ensemble of structures underlies the protection these chaperones confer to unfolding clients. This astonishing heterogeneity not only makes the system quite distinct in behavior to ATP-dependent chaperones, but also renders it intractable by conventional structural biology approaches. We find that thermally regulated quaternary dynamics of the sHSP establish and maintain the plasticity of the system. This extends the paradigm that intrinsic dynamics are crucial to protein function to include equilibrium fluctuations in quaternary structure, and suggests they are integral to the sHSPs' role in the cellular protein homeostasis network.
- Publication status:
- Published
Actions
Authors
- Journal:
- Proceedings of the National Academy of Sciences of the United States of America More from this journal
- Volume:
- 107
- Issue:
- 5
- Pages:
- 2007-2012
- Publication date:
- 2010-02-01
- DOI:
- EISSN:
-
1091-6490
- ISSN:
-
0027-8424
- Language:
-
English
- Keywords:
-
- Pubs id:
-
pubs:59335
- UUID:
-
uuid:556e158e-41bd-487d-9412-7d1a121df940
- Local pid:
-
pubs:59335
- Source identifiers:
-
59335
- Deposit date:
-
2012-12-19
Terms of use
- Copyright date:
- 2010
If you are the owner of this record, you can report an update to it here: Report update to this record