Conference item
Gradient-free maximum likelihood parameter estimation with particle filters
- Abstract:
-
In this paper we address the problem of on-line estimation of unknown static parameters in non-linear non-Gaussian state-space models. We consider a particle filtering method and employ two gradient-free Stochastic Approximation (SA) methods to maximize recursively the likelihood function, the Finite Difference SA and Spall's Simultaneous Perturbation SA. We demonstrate how these algorithms can generate maximum likelihood estimates in a simple and computationally efficient manner. The perform...
Expand abstract
- Publication status:
- Published
Actions
Authors
Bibliographic Details
- Volume:
- 1-12
- Pages:
- 3062-3067
- Host title:
- 2006 American Control Conference, Vols 1-12
- Publication date:
- 2006-01-01
- DOI:
- ISSN:
-
0743-1619
- Source identifiers:
-
172721
- ISBN:
- 1424402093
Item Description
- Pubs id:
-
pubs:172721
- UUID:
-
uuid:ff135860-7d57-4315-8baf-7000189a3138
- Local pid:
- pubs:172721
- Deposit date:
- 2012-12-19
Terms of use
- Copyright date:
- 2006
If you are the owner of this record, you can report an update to it here: Report update to this record