HOMOGENIZATION OF A ONE-DIMENSIONAL SPECTRAL PROBLEM FOR A SINGULARLY PERTurbed ELLIPTIC OPERATOR WITH NEUMANN BOUNDARY CONDITIONS

Grégoire Allaire
CMAP, CNRS UMR 7641
Ecole Polytechnique
91128 Palaiseau, France

Yves Capdeboscq
Mathematical Institute
24-29 St Giles’
OXFORD OX1 3LB, UK

Marjolaine Puel
Institut de Mathématiques, Université de Toulouse and CNRS
Université Paul Sabatier
31062 Toulouse Cedex 9, France

Abstract. We study the asymptotic behavior of the first eigenvalue and eigenfunction of a one-dimensional periodic elliptic operator with Neumann boundary conditions. The second order elliptic equation is not self-adjoint and is singularly perturbed since, denoting by ε the period, each derivative is scaled by an ε factor. The main difficulty is that the domain size is not an integer multiple of the period. More precisely, for a domain of size 1 and a given fractional part $0 \leq \delta < 1$, we consider a sequence of periods $\varepsilon_n = 1/(n + \delta)$ with $n \in \mathbb{N}$. In other words, the domain contains n entire periodic cells and a fraction δ of a cell cut by the domain boundary. According to the value of the fractional part δ, different asymptotic behaviors are possible: in some cases an homogenized limit is obtained, while in other cases the first eigenfunction is exponentially localized at one of the extreme points of the domain.

1. Introduction. This paper is devoted to the homogenization of a spectral problem for a singularly perturbed elliptic equation in a one-dimensional periodic medium with Neumann boundary conditions. Without loss of generality we consider a bounded domain $\Omega = (0,1)$ and we denote by $\varepsilon > 0$ its period, or rather the period of the coefficients of the equation posed in Ω. Although we shall sometime use the notations ∇ and div for the gradient and the divergence operators, they

2000 Mathematics Subject Classification. Primary: 35B27; Secondary: 74Q05.
Key words and phrases. Homogenization, spectral problem, localization.
simply mean derivation with respect to the single spatial variable. We study the following eigenvalue problem

\[
\begin{cases}
-\varepsilon^2 \text{div} \left(a \left(\frac{x}{\varepsilon} \right) \nabla u^\varepsilon \right) + \varepsilon b \left(\frac{x}{\varepsilon} \right) \nabla u^\varepsilon + c \left(\frac{x}{\varepsilon} \right) u^\varepsilon = \lambda^\varepsilon \rho \left(\frac{x}{\varepsilon} \right) u^\varepsilon \text{ in } \Omega, \\
a \left(\frac{x}{\varepsilon} \right) \nabla u^\varepsilon = 0 \text{ on } \partial \Omega.
\end{cases}
\]

We assume that \(a, b, c\) and \(\rho\) are continuous periodic functions of period one, defined in the unit cell \(Y = [0, 1]\). As usual \(x\) denotes the macroscopic variable in \(\Omega\), while \(y\) is the microscopic variable in \(Y\), and they are related by the scaling \(y = x/\varepsilon\).

We further assume that \(a\) and \(\rho\) are strictly positive, more precisely there exists a positive constant \(C\) such that

\[
\forall y \in Y, \quad 0 < C < a(y) < C^{-1}, \quad 0 < C < \rho(y) < C^{-1}.
\]

By the Krein-Rutman theorem there exists, at least, a first eigenvalue and eigenvector of (1) that we shall denote by \(\lambda^\varepsilon\) and \(u^\varepsilon\). Furthermore, \(\lambda^\varepsilon\) is real, simple and the smallest in modulus of all other eigenvalues, and \(u^\varepsilon\) can be chosen to be positive in \(\Omega\) and is thus unique if it is normalized, say by the choice of \(u^\varepsilon(0)\). Since (1) is actually an ordinary differential equation in one space dimension, the eigenfunction \(u^\varepsilon\) belongs at least to \(C^1(\Omega)\).

We study the asymptotic behavior of the smallest eigenpair \((\lambda^\varepsilon, u^\varepsilon)\), when \(\varepsilon\) tends to zero. In contrast to the case of Dirichlet boundary conditions, studied in [7], the behavior of the first eigencouple depends on the fractional part of \(1/\varepsilon\). Furthermore, new asymptotic regimes, corresponding to an exponential localization of the first eigenfunction at one of the extreme points of the domain, are obtained for some values of this fractional part. Nevertheless, for other values of the fractional part we still obtain an homogenized limit as was always the case for Dirichlet boundary conditions. Our main results are Theorems 2.2 and 2.3 below. We therefore choose the sequence \(\varepsilon \equiv \varepsilon_n\) to be of the form

\[
\varepsilon = \frac{1}{n + \delta},
\]

where \(n\) is an integer and \(0 \leq \delta < 1\) is a constant which is the rescaled size of the fractional part of the extremal periodic cell cut by the right domain boundary. In the sequel, when \(\varepsilon \equiv \varepsilon_n\) is said to go to 0, we mean that \(n\) goes to infinity with \(\delta\) fixed.

The special case \(\delta = 0\), corresponding to an entire number of cells in the domain, is already known. It already appears in [14] for a similar system of two elliptic equations. In this later case, the proof is a little more involved and uses an exponential change of unknowns together with a viscosity solution approach to the resulting Hamilton-Jacobi equation. In the case of (1) a simpler proof is available for the following proposition.

Proposition 1. Assume that \(\delta = 0\) in (2). Let \((\lambda_N, u_N)\) be the first eigenpair of the following Neumann cell problem

\[
\begin{cases}
-\text{div}_y (a(y) \nabla_y u_N) + b(y) \nabla_y u_N + c(y) u_N = \lambda_N \rho(y) u_N \text{ in } Y, \\
a(0) \nabla_y u_N(0) = a(1) \nabla_y u_N(1) = 0 \\
u_N(0) = 1.
\end{cases}
\]
Define $\theta_N = \log (u_N(1))$. Then, the function $w_N(y) = e^{-\theta_N y}u_N(y)$ is 1-periodic and the first eigenpair of (1) is exactly given by
\[
\lambda^e = \lambda_N, \quad u_e(x) = e^{\frac{\theta_N x}{\varepsilon}} w_N \left(\frac{x}{\varepsilon} \right).
\]

Proof. By the Krein-Rutman theorem u_N is positive, therefore θ_N is well defined, and thus we can define a 1-periodic function $w_N = e^{-\theta_N y}u_N(y)$ on each period. Clearly, $e^{\frac{\theta_N x}{\varepsilon}} w_N \left(\frac{x}{\varepsilon} \right)$ is a positive C^1 solution of (1) for the eigenvalue λ_N. Another application of the Krein-Rutman theorem, which implies that a positive eigenfunction can happen only for the first eigenvalue, yields that λ_N is indeed the smallest eigenvalue λ^e and then $u_e(x) = e^{\frac{\theta_N x}{\varepsilon}} w_N \left(\frac{x}{\varepsilon} \right)$.

The fact that we can get an explicit and exact formula (in terms of ε) for the solution of (1) is quite special to this case (even though it sometimes happens when $\delta \neq 0$). Nevertheless, this example shows that Neumann cell eigenvalue problems are key to the problem, and that the solutions could be of exponential-periodic type.

2. **Main results.** Before we can state our main results, Theorems 2.2 and 2.3, we need to introduce some notations and auxiliary problems. Since the case $\delta = 0$ is already covered by Proposition 1, we assume from now on that $0 < \delta < 1$ in (2). Instead of the single Neumann cell problem (3) there are now two such cell problems to consider, each of them corresponding to one endpoint of the domain Ω. For $t \in [0, 1]$ let us introduce the following Neumann cell problem on the shifted cell $(t-1, t)$: we call (u_N^t, λ_N^t), the first eigenpair of
\[
\begin{cases}
-\text{div}_y \left(a(y) \nabla_y u_N^t \right) + b(y) \nabla_y u_N^t + c(y) u_N^t = \lambda_N^t \rho(y) u_N^t & \text{in } (t-1, t), \\
 a(t) \nabla_y u_N^t(t) - a(t-1) \nabla_y u_N^t(t-1) = 0,
\end{cases}
\]
normalized by $u_N^t(t-1) = 1$. Another application of the Krein-Rutman theorem shows that there exists a first eigenvalue λ_N^t (which is real, simple and the smallest in modulus of all other eigenvalues) and a corresponding eigenvector u_N^t, which can be chosen to be positive in Y. Only two values of the parameter t matter: $t = 0$ for the left end point $x = 0$ and $t = \delta$ for the right end point $x = 1$ of Ω.

2.1. **Exponential-periodic cell problems.** We shall recognize (see Lemma 2.1 below) that the auxiliary problem (4) is actually equivalent to the well-known exponential-periodic cell problem (or shifted cell problem) introduced in [2, 6, 7, 14]. These spectral cell problems are key ingredients in the homogenization of (1). Following the lead of [2, 6, 7, 14], for each $\theta \in \mathbb{R}$ we introduce an exponential-periodic cell problem which reads
\[
\begin{cases}
-\text{div}_y (a(y) \nabla_y \psi) + b(y) \nabla_y \psi + c(y) \psi = \lambda \psi & \text{in } Y, \\
y \to e^{-\theta y} \psi(y) & Y\text{-periodic,}
\end{cases}
\]
(5)

with its associated adjoint problem, with respect to the $L^2(Y)$ scalar product,
\[
\begin{cases}
-\text{div}_y (a(y) \nabla_y \psi^*) - b(y) \nabla_y \psi^* + (c(y) - \text{div}_y b(y)) \psi^* = \lambda \psi^* & \text{in } Y, \\
y \to e^{\theta y} \psi^*(y) & Y\text{-periodic.}
\end{cases}
\]
(6)

In the above equations (5) and (6) λ stands for the first eigenvalue and ψ, ψ^* for the first eigenfunctions, which exist and are real-valued by virtue, once again, of the Krein-Rutman theorem. It also implies that λ is of algebraic and geometric
occurs when the solutions

\[
u(t) = \frac{\psi(\theta t)}{\psi(0)}
\]

of (4) and (5). However we start with a special case, similar to Proposition 3. For each \(y \in Y\), the following result.

\[
\int_0^1 \frac{b(y)}{2a(y)} dy.
\]

Proposition 2. The following properties hold true.

- The map \(\theta \to \lambda_\theta\) is strictly concave, and \(\lim_{\theta \to \pm \infty} \lambda_\theta = -\infty\).
- At the unique \(\theta_\infty\) such that \(\lambda_\theta\) is maximal, the normalized eigenvectors \(\psi_\infty\) satisfy

\[
a(y)(\psi_\infty \nabla_y \psi_\infty(y) - \psi_\infty^* \nabla_y \psi_\infty(y)) + b(y)\psi_\infty^*(y)\psi_\infty(y) \equiv 0 \text{ in } Y.
\]

- For each \(y \in Y\), the map \(\theta \to e^{-\theta y} \psi_\infty(y)\) is strictly increasing and one-to-one from \(\mathbb{R}\) to \(\mathbb{R}\).

- The maximizer \(\theta_\infty\) satisfies

\[
\theta_\infty = \int_0^1 \frac{b(y)}{2a(y)} dy.
\]

Proof. We only prove the last point whose proof is not included in references [2, 6, 7, 14]. By dividing (7) by \(\psi_\infty \psi_\infty^*\), we obtain

\[
-\theta_\infty + \nabla \log(\tilde{\psi}_\infty) - \theta_\infty - \nabla \log(\tilde{\psi}_\infty) + \frac{b}{a} = 0
\]

where \(\tilde{\psi}_\infty(y) = e^{-\theta_\infty y} \psi_\infty(y)\) and \(\psi_\infty^*(y) = e^{\theta_\infty y} \psi_\infty(y)\) are \(Y\)-periodic functions. Integrating with respect to \(y\), we obtain (8).

Actually the solution \(u_N^t\) of (4) is an exponential periodic function as shown by the following result.

Lemma 2.1. For each \(t \in [0, 1]\) there exists \(\theta_N \in \mathbb{R}\) such that the solution \(u_N^t\) of (4) satisfies \(u_N^t(y) = e^\theta_N y w_N^t(y)\) where \(w_N^t\) is a 1-periodic function.

Proof. We define the constant \(\theta_N = \log \left(u_N^t(t) \right) \). It is then easy to check that the function \(w_N^t(y) = e^{-\theta_N y} u_N^t(y)\) is 1-periodic.

Lemma 2.1 shows that the solution \(u_N^t(y)\) of (4) coincides with that of (5), \(\psi_{\theta_N}(y)/\psi_{\theta_N}^*(t - 1)\), with the same eigenvalue \(\lambda_N^t = \lambda_{\theta_N}^t\). In particular, it allows us to extend the function \(u_N^t\) to the whole \(\mathbb{R}\) although it is originally defined only in \((t - 1, t)\). Depending on the respective positions of \(\theta_N^t\) and \(\theta_N^t\) with respect to \(\theta_\infty\), we will exhibit the different behaviors of the sequence \(u_{\varepsilon}\) when \(\varepsilon\) goes to zero.

2.2. Convergence. In this subsection, Theorems 2.2 and 2.3 describe completely all possible asymptotic regimes of the spectral problem (1) using the auxiliary spectral problems (4) and (5). However we start with a special case, similar to Proposition 1, which is simpler than the general case that will follow. This special case occurs when the solutions \(u_N^0\) and \(u_N^\delta\) of (4), for \(t = 0\) and \(t = \delta\) respectively, are equal (up to a multiplicative factor).

Proposition 3. If the solutions \(u_N^0\) and \(u_N^\delta\) of (4) satisfies \(u_N^0(y) = \frac{w_N^0(y)}{w_N^\delta(-1)}\), then the first eigenpair of (1) is exactly given by

\[
\lambda^t = \lambda_N^0, \quad u_\varepsilon(x) = e^{\theta_N^t \varepsilon} \frac{w_N^0(x)}{w_N^\delta(0)},
\]
where the function \(w_0^N(y) = e^{-\theta_0^Ny}u_N^0(y) \), with \(\theta_0^N = \log (u_N^0(0)) \), is the 1-periodic function defined in Lemma 2.1.

The proof of Proposition 3 is given in Proposition 12.

When Proposition 3 does not apply, i.e., when \(u_N^0(y) \neq \frac{w_N^0}{w_N^0(-1)} \), the asymptotic behavior of \(u_0 \) can be of different nature. In some cases, described in Proposition 3, the solution of (1) concentrates on the boundaries of the domain.

Theorem 2.2. The first eigenpair of (1) is localized on one of the end points of \(\Omega \) in the following two cases.

- For \(\theta_0^N < \theta_\infty \) and \(\theta_N^0 \leq \theta_\infty \), or for \(\theta_0^N < \theta_\infty < \theta_N^0 \) and \(\lambda_N^0 < \lambda_N^\delta \), then
 \[
 |\lambda^\varepsilon - \lambda_N^\delta| = \gamma_0 e^{2(\theta_0^N - \theta_\infty)/\varepsilon} (1 + o(1)),
 \]
 and
 \[
 \left\| u^\varepsilon(x) - u^\varepsilon(0) e^{\frac{\theta_0^N - \theta_\infty}{\varepsilon} \frac{w_N^0(\hat{x})}{w_N^0(0)}} \right\|_{L^\infty(\Omega)} \leq \frac{C}{\varepsilon} e^{(\theta_0^N - \theta_\infty)/\varepsilon} \| u^\varepsilon \|_{L^1(\Omega)},
 \]
 where \(\gamma_0 \) is a positive constant defined in Proposition 13, independent of \(\varepsilon \).

- For \(\theta_0^N > \theta_\infty \) and \(\theta_N^0 \geq \theta_\infty \), or for \(\theta_0^N < \theta_\infty < \theta_N^0 \) and \(\lambda_N^0 > \lambda_N^\delta \), then
 \[
 |\lambda^\varepsilon - \lambda_N^\delta| = \gamma_1 e^{2(\theta_\infty - \theta_N^\delta)/\varepsilon} (1 + o(1)),
 \]
 and
 \[
 \left\| u^\varepsilon(x) - u^\varepsilon(1) \frac{e^{\frac{\theta_0^N - \theta_\infty}{\varepsilon} \frac{w_N^\delta(\hat{x})}{w_N^\delta(0)}}}{e^{\frac{\theta_0^N - \theta_\infty}{\varepsilon} \frac{w_N^\delta(\hat{x})}{w_N^\delta(\delta)}}} \right\|_{L^\infty(\Omega)} \leq \frac{C}{\varepsilon} e^{(\theta_\infty - \theta_N^\delta)/\varepsilon} \| u^\varepsilon \|_{L^1(\Omega)},
 \]
 where \(\gamma_1 \) is a positive constant defined in Proposition 13, independent of \(\varepsilon \).

The first eigenpair of (1) localizes at one or two end points of \(\Omega \) in the following third case.

- For \(\theta_0^N < \theta_\infty < \theta_N^\delta \) and \(\lambda_N^0 = \lambda_N^\delta \), that is \(\theta_N^\delta - \theta_\infty = \theta_\infty - \theta_0^N > 0 \), then
 \[
 \lambda^\varepsilon - \lambda_N^0 = -\gamma_\delta e^{(\theta_0^N - \theta_\infty)/\varepsilon} (1 + o(1)),
 \]
 and
 \[
 \left\| u^\varepsilon(x) - u^\varepsilon(0) \frac{e^{\frac{\theta_0^N - \theta_\infty}{\varepsilon} \frac{w_N^\delta(\hat{x})}{w_N^\delta(0)}}}{e^{\frac{\theta_0^N - \theta_\infty}{\varepsilon} \frac{w_N^\delta(\hat{x})}{w_N^\delta(\delta)}}} - u^\varepsilon(0)c_\delta e^{\frac{\theta_0^N - \theta_\infty}{\varepsilon} \frac{w_N^\delta(\hat{x})}{w_N^\delta(0)}} \right\|_{L^\infty(\Omega)} \leq \frac{C}{\varepsilon} e^{(\theta_0^N - \theta_\infty)/\varepsilon} \| u^\varepsilon \|_{L^1(\Omega)},
 \]
 where \(\gamma_\delta > 0 \) and \(c_\delta \) are constants defined in Proposition 13, independent of \(\varepsilon \).

Remark 1. Throughout this paper, \(C \) denotes a positive constant independent of \(\varepsilon \).

Remark 2. The right hand sides of all estimates in Theorem 2.2 are exponentially small with respect to \(\varepsilon \). In the two first cases, the eigenfunction \(u_\varepsilon \) is approximately the product of a periodic function and a scaled exponential, which clearly exhibits a localization effect on one and only one end point of \(\Omega \) (at least when \(\theta_0^N \) and \(\theta_N^\delta \), respectively, are not equal to zero). The precise end point of \(\Omega \) where localization
occurs is deduced from the sign of θ_N^0 or θ_N^δ, respectively. In the third case, the eigenfunction u_∞ localizes on one endpoint of Ω if $\theta_\infty \neq 0$ and on the two end points in the special case $\theta_\infty = 0$. Indeed, around $x = 0$, the ansatz says
\[
u(0) \approx u_\nu(0) e^{\frac{\theta_\nu^0 x}{w_N^0(0)}} w_N^0(\frac{x}{\varepsilon}),
\]
whereas around $x = 1$, we use the following equivalent form of the ansatz
\[
u(x) - u_\nu(0) e^{\frac{\theta_\nu^0 x}{w_N^0(0)}} w_N^0(0) = u_\nu(0) c_\delta e^{-\frac{\theta_\nu^0 (x-1)}{\varepsilon} - \frac{\theta_\nu^0}{w_N^0(0)}} \psi_\infty(\delta-1) - \frac{\theta_\nu^0}{w_N^0(0)},
\]
which implies
\[
u(x) \approx u_\nu(0) c_\delta e^{-\frac{\theta_\nu^0 (x-1)}{\varepsilon}} w_N^0(\frac{x}{\varepsilon}) \psi_\infty(\delta-1) - \frac{\theta_\nu^0}{w_N^0(0)}.
\]
Therefore, the localization is determined by the drift factor θ_∞. If $\theta_\infty < 0$, the localization is in $x = 0$, and if $\theta_\infty > 0$ the localization occurs in $x = 1$. In the special case where $\theta_\infty = 0$ which includes the self adjoint case (see Proposition 2), a double localization occurs, as the solution localizes at both endpoints.

Proof. It is a consequence of Corollary 1 which is expressed in terms of $\phi_\nu(x)$, a factorized solution defined by the relation $u_\nu(x) = \psi_\infty(\frac{x}{\varepsilon}) \phi_\nu(x)$, of the factorized cell eigenfunctions $\varphi_\delta(y) = e^{-\theta_\nu} \varphi_\nu(y)$ where φ_ν is the first eigenfunction of (16) and of the factorized Neumann solutions $\phi_\delta(y)$ given by (17). Introducing the correspondences that, on one hand,
\[
\frac{\phi_0}{\phi_0(0)} = e^{\frac{\theta_0^0}{\varepsilon}} \varphi_\delta(\frac{x}{\varepsilon}) = \frac{u_N^0(\frac{x}{\varepsilon})}{\psi_\infty(\frac{\theta_\nu^0}{\varepsilon}) \psi_\infty(\frac{x}{\varepsilon}) w_N^0(\frac{x}{\varepsilon})},
\]
and on the other hand
\[
\frac{\phi_\delta}{\phi_\delta(0)} = e^{\frac{\theta_\delta^0}{\varepsilon} \frac{\theta_\delta^0}{\varepsilon} \varphi_\delta(\frac{x}{\varepsilon}) = \frac{u_N^0(\frac{x}{\varepsilon})}{\psi_\infty(\frac{\theta_\delta^0}{\varepsilon}) w_N^0(\frac{x}{\varepsilon})}},
\]
and as well as
\[
\frac{\phi_\delta}{\phi_0(0)} = e^{\frac{\theta_\delta^0}{\varepsilon} \frac{\theta_\delta^0}{\varepsilon} \varphi_\delta(\frac{x}{\varepsilon}) = \frac{u_N^0(\frac{x}{\varepsilon})}{\psi_\infty(\frac{\theta_\delta^0}{\varepsilon})}} w_N^0(\frac{x}{\varepsilon}).
\]
the statements in Theorem 2.2 are equivalent to those in Corollary 1. A more precise corrector result is stated in Proposition 13.

The last case, $\theta_\nu^0 \geq \theta_\infty$ and $\theta_\nu^\delta \leq \theta_\infty$, not covered by Theorem 2.2, corresponds to a homogenization regime. In such a case, the first eigensolution does not localize at the endpoints. Its precise asymptotic form is given by the following result.
Theorem 2.3. For $\theta_0^N \geq \theta_\infty$ and $\theta^N_\delta \leq \theta_\infty$, the first eigenpair of (1) is of the form
\[u^\varepsilon(x) \approx \psi_\infty \left(\frac{x}{\varepsilon} \right) u(x) \text{ and } \lambda^\varepsilon = \lambda_\infty + \varepsilon^2 (\lambda_0^* + o(1)), \]
where ψ_∞ is a periodic function and (u, λ_0^*) is the first eigenpair of an homogenized problem
\[\begin{cases} -d^* \Delta u = \lambda_0^* s^* u & \text{in } \Omega, \\ u \in H^1(\Omega) \text{ and either } u(0) = 0 \text{ or } u(1) = 0, \text{ or both}. \end{cases} \]
where d^* and s^* are positive constants. (See Theorem 4.1 for a more precise statement and for the proof).

Figure 1. The diffusion coefficient a over $Y = (0,1)$.

It is interesting to notice that, in the case of Dirichlet boundary conditions, Theorem 2.3 gives the only possible asymptotic behavior, for any ε, i.e., for any δ, and in any space dimension (see [7]). Therefore, the case of Neumann boundary conditions is much more sensitive to the precise geometry.

To illustrate our main results, we provide numerical examples of each possible asymptotic behavior described in Theorem 2.2 and 2.3. We will show in the next section that non-selfadjoint problems can be reduced to selfadjoint ones, thus we chose $b(y) = 0$ for our numerical tests. For simplicity we also take $\rho(y) = 1$. Not all possible behavior can be observed with only one pair of coefficient. We use two pairs $(a(y), c_1(y))$ and $(a(y), c_2(y))$, represented in Figure 1 and 2.

Figure 2. The zero-order c_1 (left) and c_2 (right) over $Y = (0,1)$.
The coefficients (chosen very arbitrarily) are given by

\[
\log \left(a \left(y - \frac{3}{10} \right) \right) = -\sin(2\pi y) - \frac{1}{2} \sin(4\pi y) - \frac{1}{6} \sin(6\pi y) + \frac{1}{4} \sin(8\pi y),
\]

\[
\sqrt{c_1(y)} = \exp \left(-\frac{c_2(y)^2}{4} \right) + \frac{1}{2},
\]

\[
c_2(y) = \sin(2\pi y) + \cos(4\pi y) + 3.
\]

In all three Figures 3, 4 and 5 we plot the first eigenfunction of (1) for \(n = 30 \) (dashed line) and \(n = 70 \) (solid line) to show the trend of convergence as \(\epsilon \) goes to zero. Figures 3 and 4 are obtained using the first pair \((a(y), c_1(y))\) and three different values of \(\delta \), corresponding to the three configurations identified in Theorem 2.2. In particular the first eigenfunction converges pointwise to zero in the interior of the domain.

Figure 5 was obtained using the second pair \((a(y), c_2(y))\) and \(\delta = 0.2 \): it illustrates the homogenization effect characterized in Theorem 2.3. In particular the values of the first eigenfunction at the two boundary points converge to zero.

Note that the influence of the \(\delta \) parameter on the first-order corrector to the eigenvalue of a non singularly perturbed homogenization problem was already observed in [15], [12].

The purely periodic character of the coefficients in (1) is crucial for our results to hold true. Actually, a completely different behavior can arise if the coefficients
depend on the macroscopic variable \(x \) too, namely localization inside \(\Omega \) can appear [4], [5].

The content of our paper is the following. In the next section, by using a factorization principle (in the spirit of [16], [1, 2]) we reduce the original problem (1) to a selfadjoint one. It thus allows us to write a variational characterization of the first eigenvalue. Of course, this "miracle" is possible only in one space dimension. Then, Section 4 addresses the homogenization regime of Theorem 2.3. Section 5 is concerned with the exponential convergence of the eigenvalues in Theorem 2.2. Eventually Section 6 deals with the convergence and localization of the eigenfunctions.

3. Transformation into a self-adjoint problem. A remarkable feature of this eigenvalue problem is that it can be reformulated, after a suitable change of unknowns, as a self-adjoint problem with compact resolvent. Among the many advantages of working with self-adjoint problems, we shall use in the sequel the fact that the first eigenvalue is characterized as the minimizer of a Rayleigh quotient, and that the normalized eigenvectors span the space \(L^2(\Omega) \). This change of unknowns will be made thanks to the exponential-periodic functions introduced in (6), as in [6, 7, 14].

3.1. Factorization. To transform the problem into a self-adjoint one, we perform a change of unknown and consider instead of \(u^\varepsilon \) the function \(\phi^\varepsilon \) defined by

\[
\phi^\varepsilon(x) = \frac{u^\varepsilon(x)}{\psi(\frac{x}{\varepsilon})}
\]

where \(\psi(\cdot) \) is the first cell eigenfunction defined in Proposition 2. Because \(x \rightarrow \psi(\frac{x}{\varepsilon}) \) is a solution of the equation (with different boundary conditions) it was proved in [1, 2] that (12) is indeed a change of variable from \(H^1(\Omega) \) to \(H^1(\Omega) \).

Proposition 4. If \(u^\varepsilon \) is a solution of the original problem (1), then the function \(\phi^\varepsilon \), defined by (12), is an eigensolution for the following self-adjoint problem

\[
\begin{align*}
-\text{div}(d(\frac{x}{\varepsilon})\nabla \phi^\varepsilon) &= \mu^\varepsilon s(\frac{x}{\varepsilon}) \phi^\varepsilon \quad \text{in } \Omega, \\
d(\frac{x}{\varepsilon})\nabla \phi^\varepsilon + \frac{1}{\varepsilon} \phi^\varepsilon m(\frac{x}{\varepsilon}) &= 0 \quad \text{on } \partial \Omega.
\end{align*}
\]

The new periodic coefficients are given by

\[
d(y) = a(y)\psi(y)\psi(\varepsilon)(y), \quad s(y) = \rho(y)\psi(y)\psi(\varepsilon)(y), \quad m(y) = d(y)\frac{\nabla \psi(y)}{\psi(y)}
\]
and the eigenvalues μ_ε are related to the ones of (1) by
\[\mu_\varepsilon = \frac{\lambda^\varepsilon - \lambda_\infty}{\varepsilon^2}. \]

Remark 3. There are other transformations which map a non self-adjoint problem into a self-adjoint one in the theory of Hill’s equation (see chapter III in [11]).

Proof. As in [1, 7, 10, 16], replacing $u^\varepsilon(x)$ by $\phi^\varepsilon(x)\psi_\infty\left(\frac{x}{\varepsilon}\right)$ in (1) gives
\[-\varepsilon^2 \text{div}(a\psi_\infty \nabla \phi^\varepsilon) - \varepsilon \text{div}(a\phi^\varepsilon \nabla y \psi_\infty) + \varepsilon b \psi_\infty \nabla \phi^\varepsilon + b \phi^\varepsilon \nabla y \psi_\infty + c \psi_\infty \phi^\varepsilon = \lambda^\varepsilon \psi_\infty \phi^\varepsilon. \] (14)

Using the fact that ψ_∞ is solution of a cell problem, we note that
\[b \phi^\varepsilon \nabla y \psi_\infty + c \psi_\infty \phi^\varepsilon = \lambda_\infty \psi_\infty \phi^\varepsilon - \text{div}_y(a \nabla y \psi_\infty) \phi^\varepsilon. \]

Therefore (14) becomes
\[-\varepsilon^2 \text{div}(a\psi_\infty \nabla \phi^\varepsilon) - \varepsilon a \nabla \phi^\varepsilon \nabla y \psi_\infty + \varepsilon b \psi_\infty \nabla \phi^\varepsilon = (\lambda^\varepsilon - \lambda_\infty) \psi_\infty \phi^\varepsilon. \]

Multiplying this last identity by ψ_∞^*, we obtain
\[-\varepsilon^2 \psi_\infty^* \text{div}(a\psi_\infty \nabla \phi^\varepsilon) - \varepsilon a \psi_\infty^* \nabla \phi^\varepsilon \nabla y \psi_\infty + \varepsilon b \psi_\infty^* \psi_\infty \nabla \phi^\varepsilon = (\lambda^\varepsilon - \lambda_\infty) \psi_\infty^* \psi_\infty \phi^\varepsilon \]

which becomes
\[-\varepsilon^2 \text{div}(a\psi_\infty^* \psi_\infty \nabla \phi^\varepsilon) + \varepsilon (-a \psi_\infty^* \nabla y \psi_\infty + a \psi_\infty \nabla y \psi_\infty^* + b \psi_\infty^* \psi_\infty) \nabla \phi^\varepsilon \]
\[= (\lambda^\varepsilon - \lambda_\infty) \psi_\infty^* \psi_\infty \phi^\varepsilon. \]

Thanks to (7), the first order term cancels, and we obtain (12). \qed

Remark 4. Note that because of the regularity and positivity of ψ_∞ and ψ_∞^* the coefficients d, s and m are continuous and satisfy, for some constant $C > 0$,
\[C < d(y) < C^{-1}, \quad C < s(y) < C^{-1} \quad\text{and}\quad -C < m(y) < C \quad\text{for all} \quad y \in Y. \]

The coefficients $d(y), s(y), m(y)$ are indeed Y-periodic functions. As $\psi_\infty(y) = \exp(\theta_\infty y) g_\infty(y)$, with g_∞ Y-periodic, and $\psi_\infty^*(y) = \exp(-\theta_\infty y) g_\infty^*(y)$, with g_∞^* Y-periodic, we have $\psi_\infty \psi_\infty^* = g_\infty g_\infty^*$, and also
\[\frac{\nabla \psi_\infty(y)}{\psi_\infty(y)} = \frac{\nabla g_\infty(y)}{g_\infty(y)} = \frac{\nabla \psi_\infty(y + 1)}{\psi_\infty(y + 1)}. \]

Remark 5. The above factorization principle can actually be applied in any space dimension. However it yields an additional convective term in equation (13) with a periodic velocity which is divergence free and has zero average. It is only in the one-dimensional case that it implies that the velocity is zero. This is the main reason why we restrict ourselves to a one-dimensional setting.

We have transformed a non-selfadjoint problem into a selfadjoint one, at the cost of changing the Neumann boundary condition into a Fourier or Robin boundary condition. Since we work in one space dimension, we did not write the unit external normal vector in the Fourier boundary condition which thus changes the usual sign convention for the boundary condition at the left end of the interval Ω. Remark that (13) is still singularly perturbed because of the factor ε^{-1} in the boundary condition. Nevertheless, this transformation enables us to characterize the first eigenpair as minimizers of a Rayleigh quotient.
Proposition 5. The first eigenvalue of problem (13) μ^ε is given by

$$
\mu^\varepsilon = \min_{\phi \in H^1(\Omega)} \frac{\int_\Omega d \left(\frac{x}{\varepsilon} \right) |\nabla \phi|^2 \, dx + \frac{1}{\varepsilon} \left(m(\delta)\phi^2(1) - m(0)\phi^2(0) \right)}{\int_\Omega s \left(\frac{x}{\varepsilon} \right) \phi^2(x) \, dx}. \quad (15)
$$

Furthermore, the minimum in (15) is achieved by any multiple of the first eigenfunction of (13).

The proof of Proposition 5 is obvious: simply note that, whatever the signs of $m(0)$ and $m(\delta)$, the boundary terms cause no problems in the coercivity, for fixed ε, of the Rayleigh quotient since, for any small $\kappa > 0$, there exists a constant $C_\kappa > 0$ such that

$$
\phi^2(0) \leq \kappa \int_\Omega |\nabla \phi|^2 \, dx + C_\kappa \int_\Omega \phi^2(x) \, dx \quad \forall \phi \in H^1(\Omega).
$$

3.2. Cell Problems. After the factorization (12) we can again introduce exponential-periodic cell problems, adapted to the new spectral problem (13). For each $\theta \in \mathbb{R}$, define φ^θ_0 as the first eigenfunction of

$$
\begin{cases}
-\text{div}(d(y)\nabla \varphi^\theta_0) = \nu_0 s(y)\varphi^\theta_0 & \text{in } Y, \\
y \to e^{-\theta y}\varphi^\theta_0(y) & Y - \text{periodic},
\end{cases}
$$

normalized by $\varphi^\theta_0(t-1) = 1$. Since (16) is self-adjoint, there is no need to introduce an adjoint problem. In the periodic case, i.e., $\theta = 0$, the explicit solution of (16) is $\nu_0 = 0$ and $\varphi_0 \equiv 1$.

In the same spirit, we can perform a factorization, similar to (12), for the solution u^t_N of (4) and define

$$
\phi_t(y) = \psi_\infty(t-1) \frac{u^t_N(y)}{\psi_\infty(y)} \quad \text{and} \quad \mu_t = \lambda^t_N - \lambda_\infty. \quad (17)
$$

Thus ϕ_t is the first eigenfunction of

$$
\begin{cases}
-\text{div}_y(d(y)\nabla \phi_t) = \mu_t s(y)\phi_t & \text{in } (t-1, t), \\
d(t-1)\nabla_y \phi_t(t-1) + m(t-1)\phi_t(t-1) = 0, \\
d(t)\nabla_y \phi_t(t) + m(t)\phi_t(t) = 0,
\end{cases}
$$

normalized by $\phi_t(t-1) = 1$. Alternatively, (18) can be motivated by a formal study of the influence of the boundary condition in (13). As usual, the simplicity of the first eigenvalue as well as the uniqueness and positivity of the first normalized eigenfunctions of (16) and (18) follows from the Krein-Rutman theorem. The problems (16) and (18) play a role in the final result.

We now show that the eigenvalue problem (18) can be interpreted as an exponential-periodic problem.

Proposition 6. For each $t \in [0, 1]$ there exists a unique $\theta_t \in \mathbb{R}$ such that $\varphi^\theta_t = \phi_t$ and $\nu_t = \mu_t$. The sign of θ_t is the opposite of that of $m(t)$. Furthermore, $\mu_t < 0$ if $m(t) \neq 0$.

As a consequence, if $m(0) > 0$ then there exists $\theta_0 < 0$ and $C > 0$ such that for all x,

$$
0 < C < e^{-\theta_0 x} \phi_0(x) < \frac{1}{C} \quad \text{and} \quad 0 > -C > \frac{\nabla \phi_0(x)}{\phi_0(x)} > -\frac{1}{C}.
$$
If \(m(\delta) < 0 \) then there exists \(\theta_0 > 0 \) and \(C > 0 \) such that for all \(x \),
\[
0 < C < e^{-\theta_0 x} \phi_0(x) < \frac{1}{C} \text{ and } 0 < C < \frac{\nabla \phi_0(x)}{\phi_0(x)} < \frac{1}{C}.
\]

Proof. Recall from Remark 4 that \(d \) and \(m \) are periodic continuous functions. On the same token, \(y \to \nabla \phi_0(\nu) \) is also \(Y \)-periodic. Thanks to Proposition 2 (which can also be applied to the spectral problem (16)) we know that there exists a unique \(\theta_1 \) such that \(\frac{\nabla \phi_1^t(t-1)}{\phi_1^t(t-1)} = -\frac{m(t-1)}{\phi_1^t(t)} = -\frac{m(t)}{\phi_1^t(t)} \). Thus, \(\phi_1^t \) satisfies the boundary conditions of (18). Since \(\phi_1^t(t-1) = \phi(t-1) = 1 \), the uniqueness of the positive normalized first eigenfunction of (18) implies that \(\phi_1^t \equiv \phi_1 \).

Finally, note that the maximum of the map \(\theta \to \nu_0 \) is attained at \(\theta = 0 \), since the maximizer is characterized by (7), which is clearly satisfied for \(\phi \). Therefore, for all \(\theta_1 \neq 0 \), \(\mu_t = \nu_0 \). Consequently, for all \(\theta_1 \neq 0 \), \(\mu_0 = \nu_0 \). We have proven that \(\phi_0 = \phi_0^{\theta_0} \), for some \(\theta_0 \). Note that, thanks to Proposition 2, for every \(x \in [0,1] \), the map \(L(x, \cdot) : \theta \to \nabla \phi_0^{\theta}(x) / \phi_0^{\theta}(x) \) is increasing. Since \(L(0,0) = 0 \) and \(L(\theta_0,0) = -m(0)/d(0) < 0 \), we conclude that \(\theta_0 < 0 \). Since \(x \to \exp(-\theta_0 x) \phi_0(x) \) is a positive continuous periodic function, it is bounded above and below by positive constants.

Next, notice that, \(L(x,0) = 0 \) for all \(x \in [0,1] \), therefore \(L(x,\theta_0) < 0 \) since \(\theta_0 < 0 \). Finally, since \(L(\cdot, \theta_0) \) is a negative continuous \(Y \)-periodic function, it is therefore bounded above and below by negative constants. The second statement involving \(\theta_0 \) is proved in a similar way. ∎

4. The homogenization regime. In this section we show that the assumption \(m(0) \leq 0 \leq m(\delta) \) implies that the spectral problem (13) admits a homogenized limit.

Remark 6. The equality \(m(0) = m(\delta) = 0 \) is a very special case which is easy to analyze. In this case, the minimum of the Rayleigh quotient (15) is zero, attained by \(\phi = \varphi_0 \equiv 1 \), and we deduce that
\[
\lambda_\varepsilon = \lambda_\infty \text{ and } u_\varepsilon(x) = \psi_\infty \left(\frac{x}{\varepsilon} \right).
\]

From now on we shall further assume that \(m(\delta) \neq m(0) \) since \(m(0) = m(\delta) \) together with the assumption \(m(0) \leq 0 \leq m(\delta) \) implies that both term vanish.

Proposition 7. Assume \(m(0) \leq 0 \leq m(\delta) \). The eigenvalue \(\mu_\varepsilon \) satisfies
\[
0 \leq \mu_\varepsilon \leq \frac{\max(d)}{\min(s)} \pi^2.
\]

Proof. Since \(H_0^1(\Omega) \subset H^1(\Omega) \),
\[
\mu_\varepsilon \leq \min_{\phi \in H_0^1(\Omega)} \left(\frac{\int_\Omega d \left(\frac{x}{\varepsilon} \right) |\nabla \phi|^2(x)}{\int_\Omega s \left(\frac{x}{\varepsilon} \right) \phi^2(x)} \right) \leq \frac{\max(d)}{\min(s)} \pi^2.
\]

When \(m(\delta) \geq 0 \geq m(0) \) all terms in the numerator of the Rayleigh quotient (15) are non-negative, and therefore \(\mu_\varepsilon \geq 0 \). ∎
This shows that the sequence μ_ε is bounded independently of ε. In this case, following a well-established strategy (see e.g. [1, 2, 3, 13]) we consider the operator S^ε defined as follows

Proposition 8. Assume $m(0) \leq 0 \leq m(\delta)$, and $m(\delta) \neq m(0)$. Let $S^\varepsilon : L^2(\Omega) \to L^2(\Omega)$ be the self-adjoint operator defined, for $f \in L^2(\Omega)$, by $S^\varepsilon f = w^\varepsilon$ which is the unique solution in $H^1(\Omega)$ of

$$
\int_{\Omega} d \left(\frac{x}{\varepsilon} \right) \nabla w^\varepsilon \nabla \zeta \, dx + \frac{1}{\varepsilon} \left(m(\delta) w^\varepsilon(1) \zeta(1) - m(0) w^\varepsilon(0) \zeta(0) \right) = \int_{\Omega} f \zeta \, dx \tag{19}
$$

for all $\zeta \in H^1(\Omega)$. Then, for each $\varepsilon > 0$, S^ε is a compact operator in $L^2(\Omega)$. Furthermore, as ε tends to zero, S^ε converges uniformly to the operator S which to f associates $w \in \mathcal{H}$ given by

$$-d^* \Delta w = f \text{ in } \Omega,$$

where $d^* = (\int_{\gamma} d^{-1}(y) \, dy)^{-1}$ and $\mathcal{H} = \{ u \in H^1(\Omega) \text{ s.t. } u(0)m(0) = u(1)m(\delta) = 0 \}$.

Proof. This is a classical homogenization result [1, 2, 3, 13], which stems from the following a priori estimate

$$\| \nabla w^\varepsilon \|_{L^2(\Omega)}^2 + \varepsilon^{-1} |m(\delta)| (w^\varepsilon(1))^2 + \varepsilon^{-1} |m(0)| (w^\varepsilon(0))^2 \leq C \| f \|_{L^2(\Omega)}^2.$$

We will therefore only establish this estimate. Choosing w^ε as a test function in (19) we obtain

$$\int_{\Omega} d \left(\frac{x}{\varepsilon} \right) |\nabla w^\varepsilon|^2 \, dx + \frac{1}{\varepsilon} \left(m(\delta) (w^\varepsilon(1))^2 - m(0) (w^\varepsilon(0))^2 \right) = \int_{\Omega} f w^\varepsilon \, dx.$$

Since each term on the left hand side is non-negative, $d(y) > C > 0$, $m(\delta)$ and $m(0)$ are both zero, the estimate follows from the Poincaré inequality, for any $\zeta \in H^1(\Omega)$

$$\| \zeta \|_{L^2(\Omega)}^2 \leq C \left(\alpha |\zeta(0)|^2 + (1 - \alpha) |\zeta(1)|^2 + \| \nabla \zeta \|_{L^2(\Omega)}^2 \right)$$

where $\alpha = 0$ or 1. \qed

Theorem 4.1. Assume $m(0) \leq 0 \leq m(\delta)$, and $m(\delta) \neq m(0)$. Then

$$w^\varepsilon(x) = \psi_{\infty} \left(\frac{x}{\varepsilon} \right) (u(x) + r^\varepsilon(x)) \text{ and } \lambda_{\varepsilon} = \lambda_{\infty} + \varepsilon^2 \lambda_{0} + o(\varepsilon^2),$$

where r^ε tends to zero weakly in $H^1(\Omega)$ and (u, λ_{0}) is the first eigenpair of the problem

$$\begin{cases}
-d^* \Delta u = \lambda_{0} s^* u & \text{in } \Omega, \\
u \in H^1(\Omega) & \text{and } m(0)u(0) = m(\delta)u(1) = 0,
\end{cases}
$$

with $s^* = \int_{\gamma} s(y) \, dy$.

Proof. We write (13) as

$$S^\varepsilon \left(\mu^\varepsilon s \left(\frac{x}{\varepsilon} \right) \phi^\varepsilon \right) = \phi^\varepsilon$$

Since $\mu^\varepsilon s \left(\frac{x}{\varepsilon} \right)$ is bounded in $L^\infty(\Omega)$, and ϕ^ε is normalized in $L^2(\Omega)$, we can extract a weakly converging subsequence. Since S^ε is compact, ϕ^ε converges strongly in $L^2(\Omega)$ to a limit u. Thus $\mu^\varepsilon s \left(\frac{x}{\varepsilon} \right) \phi^\varepsilon$ converges weakly to $\mu s^* u$ in $L^2(\Omega)$. The conclusion follows from Proposition 8. \qed
5. The localization regime: convergence of the eigenvalues. We now turn to the other cases, that is, either \(m(0) > 0 \) or \(m(\delta) < 0 \), or both. We shall use two auxiliary cell problems. We introduce \(p_\delta \) and \(q_\delta \) as the first normalized eigen-functions (and \(l_p, l_q \), the corresponding first eigenvalues) of the following problems, posed on partial cells,

\[
\begin{cases}
-\text{div}(d(y)\nabla p_\delta) = l_p s(y)p_\delta \text{ in } (0, \delta) \\
d(0)\nabla p_\delta(0) + m(0)p_\delta(0) = 0, \\
d(\delta)\nabla p_\delta(\delta) + m(\delta)p_\delta(\delta) = 0, \text{ and } p_\delta(0) = 1,
\end{cases}
\]

and

\[
\begin{cases}
-\text{div}(d(y)\nabla q_\delta) = l_q s(y)q_\delta \text{ in } (\delta, 1) \\
d(\delta)\nabla q_\delta(\delta) + m(\delta)q_\delta(\delta) = 0, \\
d(1)\nabla q_\delta(1) + m(1)q_\delta(1) = 0, \text{ and } q_\delta(\delta) = 1.
\end{cases}
\]

Note that both \(p_\delta \) and \(q_\delta \) are \(C^1 \) functions, and satisfy the uniform bounds

\[0 < C < p_\delta < C^{-1} \text{ and } 0 < C < q_\delta < C^{-1}. \]

Proposition 9. The first eigenvalues \(\mu_0, \mu_\delta \) of (18) for \(t = 0, \delta \) satisfy

\[
\min(l_p, l_q) \leq \mu_0 \leq \max(l_p, l_q), \quad \min(l_p, l_q) \leq \mu_\delta \leq \max(l_p, l_q),
\]

and the inequalities are strict except when \(l_p = l_q \).

Proof. Define a test function \(w(y) = p_\delta(y) \) for \(0 \leq y \leq \delta \) and \(w(y) = p_\delta(\delta)q_\delta(y) \) for \(\delta \leq y \leq 1 \). It is easy to see that this function is \(C^1 \). We have

\[
\mu_0 \leq \frac{1}{\int_Y s(y)w^2(y)} \left(\int_0^1 d(y)(\nabla w)^2(y) + w^2(1)m(0) - w^2(0)m(0) \right)
\]

\[
= \frac{1}{\int_Y s(y)w^2(y)} \left(\int_0^\delta d(y)(\nabla w)^2(y) + w^2(\delta)m(\delta) - w^2(0)m(0) \right)
\]

\[
+ \frac{1}{\int_Y s(y)w^2(y)} \left(\int_\delta^1 d(y)(\nabla w)^2(y) + w^2(1)m(0) - w^2(\delta)m(\delta) \right)
\]

\[
= \frac{1}{\int_Y s(y)w^2(y)} \left(l_p \int_0^\delta s(y)w^2(y) + l_q \int_\delta^1 s(y)w^2(y) \right)
\]

\[
\leq \max(l_p, l_q).
\]

Alternatively

\[
\mu_0 = \frac{1}{\int_Y s(y)\phi_0^2(y)} \left(\int_0^1 d(y)(\nabla \phi_0)^2(y) + \phi_0^2(1)m(0) - \phi_0^2(0)m(0) \right)
\]

\[
= \frac{1}{\int_Y s(y)\phi_0^2(y)} \left(\int_0^\delta d(y)(\nabla \phi_0)^2(y) + \phi_0^2(\delta)m(\delta) - \phi_0^2(0)m(0) \right)
\]

\[
+ \frac{1}{\int_Y s(y)\phi_0^2(y)} \left(\int_\delta^1 d(y)(\nabla \phi_0)^2(y) + \phi_0^2(1)m(0) - \phi_0^2(\delta)m(\delta) \right)
\]

\[
\geq \frac{1}{\int_Y s(y)\phi_0^2(y)} \left(l_p \int_0^\delta s(y)\phi_0^2(y) + l_q \int_\delta^1 s(y)\phi_0^2(y) \right)
\]

\[
\geq \min(l_p, l_q).
\]
Furthermore, the inequalities above show that \(\mu_0 \) is bounded from above and below by two strictly convex combinations of \(l_p \) and \(l_q \). It implies that any inequality becomes an equality if and only if \(l_p = l_q \). Indeed, if, for example, \(l_p = \mu_0 \), the previous inequalities imply \(\mu_0 = l_q \), then if an inequality is not strict, we get immediately \(l_p = l_q \).

The proof for \(\mu_\delta \) is similar. \(\Box \)

The goal of this section is to prove that \(\varepsilon^2 \mu_\varepsilon \) converges to a limit which is either \(\min(\mu_0, \mu_\delta) \) or \(\max(\mu_0, \mu_\delta) \) depending on the sign of \(l_p - l_q \).

Proposition 10. Assume either \(m(0) > 0 \) or \(m(\delta) < 0 \), or both. Then, if \(l_p \geq l_q \), \(\varepsilon^2 \mu_\varepsilon \) is a decreasing sequence converging to a limit \(L \) given by

\[
L = \inf_{\varepsilon > 0} \varepsilon^2 \mu_\varepsilon = \max(\mu_0, \mu_\delta),
\]

whereas, if \(l_q \geq l_p \), then \(\varepsilon^2 \mu_\varepsilon \) is an increasing sequence converging to

\[
L = \sup_{\varepsilon > 0} \varepsilon^2 \mu_\varepsilon = \min(\mu_0, \mu_\delta).
\]

Furthermore,

\[
|\varepsilon^2 \mu_\varepsilon - L| \leq C \exp \left(-\frac{C}{\varepsilon} \right).
\]

Proposition 10 involves four parameters, namely the sign of \(m(0) \), the sign of \(m(\delta) \), the sign of \(l_p - l_q \), and the sign of \(\mu_0 - \mu_\delta \). Not all combinations of signs are possible, and in fact the sign of one of the parameters can be determined by the others. We now give a variant of Proposition 10, which gives the convergence of the eigenvalues without referring to \(l_p \) or \(l_q \).

Proposition 11. If \(m(0) > 0 \), or \(m(\delta) < 0 \), or both, then \(\varepsilon^2 \mu_\varepsilon \) converges monotonically to a limit \(L \), and

\[
|\varepsilon^2 \mu_\varepsilon - L| \leq C \exp \left(-\frac{C}{\varepsilon} \right).
\]

If \(m(0) > 0 \) and \(m(\delta) \geq 0 \), then \(L = \mu_0 \).
If \(m(0) \leq 0 \) and \(m(\delta) < 0 \), then \(L = \mu_\delta \).
If both \(m(0) > 0 \) and \(m(\delta) < 0 \), then \(\varepsilon^2 \mu_\varepsilon \) increases monotonically to \(\min(\mu_0, \mu_\delta) \).

To prove Proposition 10, we rely on several lemmas, that will be proved at the end of this section.

First, we derive an upper bound when \(l_q \geq l_p \), and a lower bound when \(l_p \geq l_q \).

Lemma 5.1. Suppose \(m(0) > 0 \), or \(m(\delta) < 0 \), or both.

Then for \(\varepsilon \) small enough, \(\varepsilon^2 \mu_\varepsilon < -C < 0 \).
If \(l_q \geq l_p \), then \(\varepsilon^2 \mu_\varepsilon \leq \min(\mu_0, \mu_\delta) \).
If \(l_p \geq l_q \), then \(\varepsilon^2 \mu_\varepsilon \geq \max(\mu_0, \mu_\delta) \).

Second, we make use of the dependence on \(n \) of the sequence \(\varepsilon \). Specifically, in the following lemma we denote \(\varepsilon_n = (n + \delta)^{-1} \), and \(\mu_n = \mu_{\varepsilon_n} \), for all \(n \). We derive lower and upper bounds for differences between two consecutive terms of the sequence \((\varepsilon_n \mu_n) \).

Lemma 5.2. The following two lower bounds hold:

\[
\varepsilon_{n+1}^2 \mu_{n+1} \geq \varepsilon_n^2 \mu_n \left(1 - \kappa_{\varepsilon_{n+1}} \right) + \kappa_{\varepsilon_{n+1}}^2 \mu_\delta,
\]

(22)
and
\[\varepsilon_{n+1}^2 \mu_{n+1} \geq \varepsilon_n^2 \mu_n \left(1 - \kappa_{n+1}^0\right) + \kappa_{n+1}^0 \mu_0, \]
where
\[0 < \kappa_{0}^1 = \frac{\int_0^1 s \left(\frac{x}{\varepsilon}\right) \phi^\varepsilon(x)^2 dx}{\int_0^1 s \left(\frac{x}{\varepsilon}\right) \phi^\varepsilon(x)^2 dx} < 1, \quad \text{and} \quad 0 < \kappa_{0}^0 = \frac{\int_0^1 s \left(\frac{x}{\varepsilon}\right) \phi^\varepsilon(x)^2 dy}{\int_0^1 s \left(\frac{x}{\varepsilon}\right) \phi^\varepsilon(x)^2 dx} < 1. \]

The following two upper bounds hold:
\[\varepsilon_{n+1}^2 \mu_{n+1} \leq \varepsilon_n^2 \mu_n \left(1 - \chi_{n+1}^1\right) + \mu_0 \chi_{n+1}^1, \]
and
\[\varepsilon_{n+1}^2 \mu_{n+1} \leq \varepsilon_n^2 \mu_n \left(1 - \chi_{n+1}^0\right) + \mu_0 \chi_{n+1}^0, \]
where
\[0 < \chi_{1}^0 = \frac{\left(\frac{\phi^\varepsilon(0)}{\phi_0(1)}\right)^2 \int_0^1 s \left(\frac{y}{\varepsilon}\right) \phi_0(y)^2 dy}{\int_0^1 s \left(\frac{y}{\varepsilon}\right) \phi^\varepsilon(y)^2 dy + \left(\frac{\phi^\varepsilon(0)}{\phi_0(1)}\right)^2 \int_0^1 s \left(\frac{y}{\varepsilon}\right) \phi_0(y)^2 dy} < 1, \]
and
\[0 < \chi_{1}^1 = \frac{\left(\frac{\phi^\varepsilon(1)}{\phi_0(\delta - 1)}\right)^2 \int_{\delta - 1}^\delta s \left(\frac{y}{\varepsilon}\right) \phi_0(y)^2 dy}{\int_{\delta - 1}^\delta s \left(\frac{y}{\varepsilon}\right) \phi^\varepsilon(y)^2 dy + \left(\frac{\phi^\varepsilon(1)}{\phi_0(\delta - 1)}\right)^2 \int_{\delta - 1}^\delta s \left(\frac{y}{\varepsilon}\right) \phi_0(y)^2 dy} < 1. \]

Finally, we show that lower bounds on the weights \(\kappa_{0,1}^0 \) and \(\chi_{0,1}^0 \) can be obtained depending on the boundary conditions \(m(0) \) and \(m(\delta) \).

Lemma 5.3. The following relations hold
\[\kappa_{1}^- \int_0^1 s \left(\frac{x}{\varepsilon}\right) \phi^\varepsilon(x)^2 dx > \varepsilon C \phi^\varepsilon(0)^2 \quad \text{and} \quad \kappa_{1}^+ \int_0^1 s \left(\frac{x}{\varepsilon}\right) \phi^\varepsilon(x)^2 dx > \varepsilon C \phi^\varepsilon(1)^2. \]

If \(m(0) > 0 \) and \(m(\delta) \geq 0 \),
\[\phi^\varepsilon(0)^2 > C \varepsilon \int_0^1 s \left(\frac{x}{\varepsilon}\right) \phi^\varepsilon(x)^2 dx. \]

As a consequence, \(\kappa_{1}^0 > C > 0 \) and \(\chi_{1}^0 > C > 0 \).

If \(m(0) \leq 0 \) and \(m(\delta) < 0 \),
\[\phi^\varepsilon(1)^2 > C \varepsilon \int_0^1 s \left(\frac{x}{\varepsilon}\right) \phi^\varepsilon(x)^2 dx. \]

As a consequence, \(\kappa_{1}^1 > C > 0 \) and \(\chi_{1}^1 > C > 0 \).

If \(m(0) > 0 \) and \(m(\delta) < 0 \),
\[\phi^\varepsilon(0)^2 + \phi^\varepsilon(1)^2 > C \varepsilon \int_0^1 s \left(\frac{x}{\varepsilon}\right) \phi^\varepsilon(x)^2 dx. \]

As a consequence, \(\min \left(\kappa_{1}^0, \kappa_{1}^1\right) > C > 0, \min \left(\chi_{1}^0, \chi_{1}^1\right) > C > 0. \)

We are now in a position to prove Proposition 10.
Proof of Proposition 10. Suppose \(l_p \geq l_q \). Then, Lemma 5.1 shows that \(\varepsilon^2 \mu_\varepsilon \geq \max(\mu_0, \mu_\delta) \). Using the upper bound \(\mu_0 \leq \max(\mu_0, \mu_\delta) \leq \varepsilon_n^2 \mu_n \) in (26) yields
\[
\varepsilon_{n+1}^2 \mu_{n+1} \leq \varepsilon_n^2 \mu_n,
\]
therefore the sequence \(\varepsilon^2 \mu_\varepsilon \) is decreasing. Now rewrite (26) under the form
\[
0 \leq \varepsilon_{n+1}^2 \mu_{n+1} - \mu_0 \leq \left(1 - \chi_{\varepsilon_n}^0 \right) \left(\varepsilon_n^2 \mu_n - \mu_0 \right) .
\]
This geometric relation implies, for \(\varepsilon_0 = 0 \),
\[
0 \leq \varepsilon_0 \mu_0 - \mu_0 \leq \left(1 - \min_{m \leq n} \chi_{\varepsilon_m}^0 \right) \left(\varepsilon_n^2 \mu_n - \mu_0 \right) ,
\]
or in other words,
\[
0 \leq \varepsilon^2 \mu_\varepsilon - \mu_0 \leq C e^{-\varepsilon^{-1} \min_{\varepsilon \geq \varepsilon_0} \chi_{\varepsilon_0}^0} .
\]
(32)
Similarly, using (25) instead, we obtain
\[
0 \leq \varepsilon^2 \mu_\varepsilon - \mu_\delta \leq C e^{-\varepsilon^{-1} \min_{\varepsilon \geq \varepsilon_0} \chi_{\varepsilon_0}^1} .
\]
(33)
Now, Lemma 5.3 says that when \(m(0) > 0 \), or \(m(\delta) < 0 \), or both, then
\[
\max(\min_{\varepsilon > 0} \chi_{\varepsilon_0}^0, \min_{\varepsilon > 0} \chi_{\varepsilon_1}^1) > C > 0 .
\]
So at least one of inequalities (32) and (33) implies convergence of \(\varepsilon^2 \mu_\varepsilon \) to either \(\mu_0 \) or \(\mu_\delta \), and since \(\varepsilon^2 \mu_\varepsilon > \max(\mu_0, \mu_\delta) \), this in fact shows
\[
0 \leq \varepsilon^2 \mu_\varepsilon - \max(\mu_0, \mu_\delta) < C \exp(-C/\varepsilon) ,
\]
as announced.

Suppose now \(l_q > l_p \). Then, Lemma 5.1 shows that \(\varepsilon^2 \mu_\varepsilon < \min(\mu_0, \mu_\delta) \). Using the upper bound \(\mu_0 \geq \min(\mu_0, \mu_\delta) > \varepsilon_n^2 \mu_n \) in (23) yields
\[
\varepsilon_{n+1}^2 \mu_{n+1} > \varepsilon_n^2 \mu_n,
\]
therefore the sequence \(\varepsilon^2 \mu_\varepsilon \) is increasing. Now rewrite (23) under the form
\[
0 > \varepsilon_{n+1}^2 \mu_{n+1} - \mu_0 \geq \left(1 - \kappa_{\varepsilon_n}^0 \right) \left(\varepsilon_n^2 \mu_n - \mu_0 \right) .
\]
As above this geometric relation implies
\[
0 < \mu_0 - \varepsilon^2 \mu_\varepsilon \leq C e^{-\varepsilon^{-1} \min_{\varepsilon \geq \varepsilon_0} \kappa_{\varepsilon_0}^0} .
\]
(34)
Similarly, using (22) instead of (23), we obtain
\[
0 < \mu_\delta - \varepsilon^2 \mu_\varepsilon \leq C e^{-\varepsilon^{-1} \min_{\varepsilon \geq \varepsilon_0} \kappa_{\varepsilon_0}^1} .
\]
(35)
And, again, Lemma 5.3 says that when \(m(0) > 0 \), or \(m(\delta) < 0 \), or both, at least one of the two terms \(\min_{\varepsilon > 0} \kappa_{\varepsilon_0}^0 \) and \(\min_{\varepsilon > 0} \kappa_{\varepsilon_1}^1 \) is positive. So at least one of inequalities (34) and (35) implies
\[
0 < \min(\mu_0, \mu_\delta) - \varepsilon^2 \mu_\varepsilon < C \exp(-C/\varepsilon) ,
\]
as announced.

We now turn to the proof of the different Lemmas.
Proof of Lemma 5.2. Let us prove the two lower bounds (22) and (23). Take two successive small positive parameters \(\varepsilon_{n+1} < \varepsilon_n \). Let us denote by \(\phi^{n+1} = \phi^{\varepsilon_{n+1}} \) the first eigenfunction of (13) or the minimizer of (15). We make the change of variables \(y = x/\varepsilon_{n+1} \) and we define \(\tilde{\phi}^{n+1}(y) = \phi^{n+1}(\varepsilon_{n+1}y) \). Recalling that \(\varepsilon_{n+1} = (n+1+\delta)^{-1} \), we get

\[
\begin{align*}
\varepsilon_{n+1}^2 \mu_{n+1} &= 2 \int_\Omega d\left(\frac{x}{\varepsilon_{n+1}}\right) (\nabla \phi^{n+1})^2 (x) dx + \frac{1}{\varepsilon_{n+1}} (m(\delta)\phi^{n+1}(1)^2 - m(0)\phi^{n+1}(0)^2) \\
&= \int_0^{\varepsilon_{n+1}^{-1}} d(y) (\nabla \phi^{n+1})^2 (y) dy + m(\delta)\phi^{n+1}(\varepsilon_{n+1}^{-1})^2 - m(0)\phi^{n+1}(0)^2 \\
&= \int_0^{n+\delta} d(y) (\nabla \tilde{\phi}^{n+1})^2 (y) dy + m(\delta)\tilde{\phi}^{n+1}(n+\delta)^2 - m(0)\tilde{\phi}^{n+1}(0)^2 \\
&+ \int_{n+\delta}^{n+1+\delta} d(y) (\nabla \tilde{\phi}^{n+1})^2 (y) dy + m(\delta)\left(\tilde{\phi}^{n+1}(n+1+\delta)^2 - \tilde{\phi}^{n+1}(n+\delta)^2\right) \\
&= \int_0^{n+1+\delta} s(y)\phi^{n+1}(y)^2 dy.
\end{align*}
\]

From the minimizing properties of \(\mu_n \), we get

\[
\begin{align*}
\int_0^{n+\delta} d(y) (\nabla \tilde{\phi}^{n+1})^2 (y) dy + m(\delta)\tilde{\phi}^{n+1}(n+\delta)^2 - m(0)\tilde{\phi}^{n+1}(0)^2 \\
&\geq \frac{\varepsilon_{n}^2 \mu_n}{\int_0^{n+1+\delta} s(y)\phi^{n+1}(y)^2 dy}.
\end{align*}
\]

On the other hand, the segment \([n+\delta, n+1+\delta]\) is a translation of \([\delta - 1, \delta]\) and from the minimizing property of \(\mu_\delta \) we deduce

\[
\begin{align*}
\int_{n+\delta}^{n+1+\delta} d \left(\nabla \tilde{\phi}^{n+1}\right)^2 dy + m(\delta) \left(\tilde{\phi}^{n+1}(n+1+\delta)^2 - \tilde{\phi}^{n+1}(n+\delta)^2\right) \\
&\geq \mu_\delta \int_{n+\delta}^{n+1+\delta} s\phi^{n+1}(y)^2 dy \\
&\geq \frac{\mu_\delta}{\int_0^{n+1+\delta} s\phi^{n+1}(y)^2 dy}.
\end{align*}
\]

Thus we obtain the lower bound (22),

\[
\varepsilon_{n+1}^2 \mu_{n+1} \geq \varepsilon_n^2 \mu_n (1 - \kappa_{\varepsilon_{n+1}}^1) + \kappa_{\varepsilon_{n+1}^-}^1 \mu_\delta,
\]

where \(\kappa_{\varepsilon_{n+1}}^1 \) is defined by (24). By a symmetric argument, exchanging the two endpoints, we obtain in a similar way (23).

Let us now turn to the upper bounds. Since \(\varepsilon_{n+1} < \varepsilon_n \), we define a test function

\[
w^{n+1} = \left\{
\begin{array}{ll}
\phi^n \left(\frac{\varepsilon_n}{\varepsilon_{n+1}} x\right) & \text{on } [0, \varepsilon_{n+1}/\varepsilon_n], \\
\phi^n(1) \frac{\phi^{n+1}(\varepsilon_{n+1}^\delta)}{\phi^{n+1}(\varepsilon_{n+1}^{-1})} \phi_{\delta} \left(\frac{x}{\varepsilon_{n+1}} + \delta - 1 - \frac{1}{\varepsilon_n}\right) & \text{on } [\varepsilon_{n+1}/\varepsilon_n, 1],
\end{array}
\right.
\]

which is clearly continuous on \(\Omega \) (it is even \(C^1(\Omega) \) by further inspection). Taking \(w^{n+1} \) as a test function in the Rayleigh quotient for \(\mu_{n+1} \), and arguing as above,
we deduce (25), namely,
\[\varepsilon_{n+1}^2 \mu_{n+1} \leq \varepsilon_n^2 \mu_n \left(1 - \chi_{\varepsilon_n} \right) + \mu_\delta \chi_{\varepsilon_n}^1, \]
where
\[\chi_{\varepsilon_n}^1 = \frac{|\phi_n(1)|^2}{|\phi_\delta(\delta-1)|} \int_\varepsilon_{n+1}^{\varepsilon_n} s \left(\frac{x}{\varepsilon_{n+1}} \right) \phi_\delta^2(x) dx \]
\[+ \frac{|\phi_n(1)|^2}{|\phi_\delta(\delta-1)|} \int_\varepsilon_{n+1}^{\varepsilon_n} s \left(\frac{x}{\varepsilon_{n+1}} \right) \phi_\delta^2(x) dx \]
\]
with \(\phi_\delta(x) = \phi_\delta \left(\frac{x}{\varepsilon_{n+1}} + \delta - 1 - \frac{1}{\varepsilon_n} \right) \). By the change of variables \(y = x/\varepsilon_{n+1} \), we obtain that \(\chi_{\varepsilon_n}^1 \) is indeed given by (28).

To prove the other upper bound (26), the argument is similar, using in this case the test function
\[w_{n+1} = \begin{cases} \frac{\phi_n(0)}{\phi_\delta(1) - \phi_\delta(0)} \phi_\delta \left(\frac{x}{\varepsilon_{n+1}} \right) & \text{on } [0, 1 - \varepsilon_{n+1}/\varepsilon_n], \\ \phi_n \left(\frac{x}{\varepsilon_{n+1}} \frac{\varepsilon_n}{x_{n+1}} \right) x + 1 - \frac{\varepsilon_n}{x_{n+1}} & \text{on } [1 - \varepsilon_{n+1}/\varepsilon_n, 1]. \end{cases} \]

\[d \left(\frac{t}{\varepsilon} \right) \nabla \phi^\varepsilon(t) + \frac{1}{\varepsilon} m(0) \phi^\varepsilon(t) = -\mu_{\varepsilon} \int_0^t s \left(\frac{x}{\varepsilon} \right) \phi^\varepsilon(x) dx \]

Dividing by \(d \left(\frac{t}{\varepsilon} \right) \) and integrating again
\[\phi^\varepsilon(t) - \phi^\varepsilon(0) + \frac{1}{\varepsilon} \left(\int_0^t d^{-1} \left(\frac{\tau}{\varepsilon} \right) d\tau \right) m(0) \phi^\varepsilon(0) \]
\[= -\mu_{\varepsilon} \int_0^t d^{-1} \left(\frac{u}{\varepsilon} \right) \int_0^u s \left(\frac{x}{\varepsilon} \right) \phi^\varepsilon(x) dx du. \]

The right-hand-side of (36) is positive because \(\mu_{\varepsilon} < -\varepsilon^{-2}C < 0 \) and \(\phi^\varepsilon > 0 \). If \(m(0) \leq 0 \), this implies that, for \(0 \leq t \leq 1 \),
\[\phi^\varepsilon(t) \geq \phi^\varepsilon(0). \]

On the other hand, if \(m(0) > 0 \), we write
\[\phi^\varepsilon(t) \geq \phi^\varepsilon(0) \left(1 - \frac{1}{\varepsilon} \left(\int_0^t d^{-1} \left(\frac{u}{\varepsilon} \right) du \right) m(0) \right) \geq \phi^\varepsilon(0) \left(1 - \frac{t}{\varepsilon \min a} \right), \]
which implies, for \(0 \leq t \leq \frac{\varepsilon}{2} \min \left(\frac{m(0)}{\min a}, 1 \right) \), that
\[\phi^\varepsilon(t) \geq \frac{1}{2} \phi^\varepsilon(0). \]
Consequently, in either case
\[\kappa_\varepsilon^0 \int_0^1 s \left(\frac{x}{\varepsilon} \right) \phi^\varepsilon (x)^2 \, dx = \int_0^\varepsilon s \left(\frac{x}{\varepsilon} \right) \phi^\varepsilon (x)^2 \, dx \geq \varepsilon \min(s) - \frac{\min(s)}{4} \phi^\varepsilon (0)^2. \]

The proof of \(\frac{1}{1-\varepsilon} s \left(\frac{x}{\varepsilon} \right) \phi^\varepsilon (x)^2 \, dx \geq C \varepsilon \phi^\varepsilon (1)^2 \) is similar.

Let us now prove the lower bounds (29-31). The variational formulation of (13) with \(\phi^\varepsilon \) as a test function yields
\[-\int_0^1 d \left(\frac{x}{\varepsilon} \right) (\nabla \phi^\varepsilon)^2 \, dx - \frac{1}{\varepsilon} m(\delta) \phi^\varepsilon (1)^2 + \frac{1}{\varepsilon} m(0) \phi^\varepsilon (0)^2 = -\mu_\varepsilon \int_0^1 s \left(\frac{x}{\varepsilon} \right) (\phi^\varepsilon)^2 \, dx.\]

Since the first term is negative and \(\mu_\varepsilon < -\varepsilon^{-2} C < 0 \), we deduce
\[\max \left(-m(\delta) \phi^\varepsilon (1)^2, m(0) \phi^\varepsilon (0)^2 \right) \geq -\frac{\varepsilon \mu_\varepsilon}{2} \int_0^1 s \left(\frac{x}{\varepsilon} \right) (\phi^\varepsilon)^2 \, dx \geq C \int_0^1 s \left(\frac{x}{\varepsilon} \right) (\phi^\varepsilon)^2 \, dx. \]

If \(m(\delta) \geq 0 \), and \(m(0) > 0 \) the maximum is \(m(0) \phi^\varepsilon (0)^2 \), which proves (29). Conversely, if \(m(\delta) < 0 \), and \(m(0) \leq 0 \), the maximum is \(-m(\delta) \phi^\varepsilon (1)^2 \), which proves (30). If \(m(\delta) < 0 \), and \(m(0) > 0 \), the maximum is attained by at least one of the points, or both, which proves (31). Finally, notice that for \(i = 0, 1 \),
\[\chi^i_\varepsilon = \left(\int_0^1 s \left(\frac{x}{\varepsilon} \right) \phi^\varepsilon (x)^2 \, dx - \varepsilon \phi^\varepsilon (i)^2 \right)^{-1}, \]
where \(c_i \) is a positive constant, therefore the bound (37) implies the desired lower bound on \(\min(\chi^0_\varepsilon, \chi^1_\varepsilon) > C > 0 \).

Finally, note that
\[\chi^i_\varepsilon \leq C \varepsilon \phi^\varepsilon (i)^2 \int_0^1 s \left(\frac{x}{\varepsilon} \right) \phi^\varepsilon (x)^2 \, dx \leq C \kappa^i_\varepsilon, \]
therefore \(\min(\chi^0_\varepsilon, \chi^1_\varepsilon) > C > 0 \) implies \(\min(\kappa^0_\varepsilon, \kappa^1_\varepsilon) > C > 0. \)

Lemma 5.1 will be a consequence of the following Lemma.

Lemma 5.4. There exist two parameters \(0 < \tau^0_\varepsilon < 1 \) and \(0 < \kappa^1_\varepsilon < \kappa^1_\varepsilon < 1 \) such that
\[\mu_0 (1 - \kappa^1_\varepsilon) + l_p \kappa_\varepsilon^1 \leq \varepsilon^2 \mu_\varepsilon \leq \mu_0 (1 - \tau^0_\varepsilon) + \mu_\varepsilon (1 - \tau^0_\varepsilon). \]

Similarly, there exist two parameters \(0 < \tau^0_\varepsilon < 1 \) and \(0 < \kappa^0_\varepsilon < \kappa^0_\varepsilon < 1 \) such that
\[\mu_\varepsilon (1 - \kappa^0_\varepsilon) + l_p \kappa_\varepsilon^0 \leq \varepsilon^2 \mu_\varepsilon \leq \mu_\varepsilon (1 - \tau^0_\varepsilon) + \mu_\varepsilon (1 - \tau^0_\varepsilon). \]

This allows to prove Lemma 5.1.
Proof of Lemma 5.1. Proposition 9 implies that \(\min(l_p, l_q) \leq \mu_0, \mu_\delta \leq \max(l_p, l_q) \).

If \(l_p \leq l_q \), then the upper bound in (38) shows that \(\varepsilon^2 \mu_\varepsilon \leq \mu_0 \), whereas the upper bound in (39) shows that \(\varepsilon^2 \mu_\varepsilon \leq \mu_\delta \). Thus, \(\varepsilon^2 \mu_\varepsilon \leq \min(\mu_0, \mu_\delta) < 0 \) by virtue of Proposition 6.

Symmetrically if \(l_p \geq l_q \) using the lower bounds in (38) and (39) we obtain

\[
\varepsilon^2 \mu_\varepsilon \geq \max(\mu_0, \mu_\delta).
\]

Finally, let us show that \(\varepsilon^2 \mu_\varepsilon < -C < 0 \) for \(\varepsilon \) small enough. Suppose \(m(0) > 0 \).

Choosing as a test function \(\exp(-\alpha x/\varepsilon) \) with \(\alpha > 0 \), in the Rayleigh quotient (15) defining \(\mu_\varepsilon \), we obtain

\[
\mu_\varepsilon \leq \frac{\alpha^2}{\varepsilon^2} \frac{1}{0} \int d \left(\frac{x}{\varepsilon} \right) \exp(-2\alpha x/\varepsilon) dx - \frac{1}{\varepsilon} m(0) + \frac{1}{\varepsilon} m(\delta) \exp(-2\alpha/\varepsilon)
\]

\[
\leq \frac{1}{\varepsilon^2} \frac{1}{0} \int s \left(\frac{x}{\varepsilon} \right) \exp(-2\alpha x/\varepsilon) dx - \frac{1}{\varepsilon} m(0) + \frac{1}{\varepsilon} m(\delta) \exp(-2\alpha/\varepsilon)
\]

\[
\leq \frac{1}{\varepsilon^2} \frac{1}{0} \int \frac{\alpha \max(d) - m(0) + m(\delta) \exp(-2\alpha/\varepsilon)}{1 - \exp(-2\alpha/\varepsilon)} dx
\]

Pick for example \(\alpha = m(0)/\max(d) \), to obtain \(\mu_\varepsilon \leq \frac{-m(0)}{\varepsilon^2 \min(\delta)} (1 + C \exp(-C/\varepsilon)) \), which shows that \(\varepsilon^2 \mu_\varepsilon < -C < 0 \) for \(\varepsilon \) small enough. The argument is similar for \(m(\delta) < 0 \), choosing instead a test function \(\exp(-\alpha(1 - x)/\varepsilon) \) with \(\alpha > 0 \).

Proof of Lemma 5.4. Let us focus on the proof of the first bound (38). To obtain an upper bound, we construct a continuous (actually \(C^1 \)) test function for the Rayleigh quotient (15) as follows. Recall that \(\varepsilon^{-1} = n + \delta \), so that \(\varepsilon^{-1} - 1 < n < \varepsilon^{-1} \) and \(n\varepsilon \leq x \leq 1 \Leftrightarrow 0 \leq (x - n\varepsilon)\varepsilon^{-1} \leq \delta \). We define \(w^\varepsilon \) as

\[
w^\varepsilon(x) = \begin{cases}
\phi_0 \left(\frac{x}{\varepsilon} \right) & \text{for } 0 \leq x \leq n\varepsilon, \\
\phi_0(n) p_\delta \left(\frac{x - n\varepsilon}{\varepsilon} \right) & \text{for } n\varepsilon \leq x \leq 1.
\end{cases}
\]

Recall that, by virtue of Proposition 6, \(\phi_0 \) is equal to an exponential-periodic function \(\varphi_{\phi_0} \) and thus is defined everywhere in \(\mathbb{R} \) and not only on the interval \((0, 1)\). By
construction, \(w^\varepsilon \) is continuous and we can use it as a test function in (15) to obtain

\[
\mu^\varepsilon \leq \frac{\int_0^{n\varepsilon} d\left(\frac{x}{\varepsilon}\right) |\nabla w^\varepsilon|^2 \, dx + \frac{1}{\varepsilon} \left(m(0) |w^\varepsilon(n\varepsilon)|^2 - m(0) |w^\varepsilon(0)|^2 \right)}{\int_0^1 s\left(\frac{x}{\varepsilon}\right) w^\varepsilon(x)^2 \, dx}
\]

\[
+ \frac{1}{n\varepsilon} \int_0^{n\varepsilon} d\left(\frac{x}{\varepsilon}\right) |\nabla w^\varepsilon|^2 \, dx + \frac{1}{\varepsilon} \left(m(0) |w^\varepsilon(1)|^2 - m(0) |w^\varepsilon(n\varepsilon)|^2 \right)
\]

\[
\leq \frac{\varepsilon^{-2} \mu_0 \int_0^{n\varepsilon} \frac{x}{\varepsilon} \phi_0 \left(\frac{x}{\varepsilon}\right)^2 \, dx + \varepsilon^{-2} l_p \phi_0(n)^2 \int_0^{1} \frac{x}{\varepsilon} p_0 \left(\frac{x - n\varepsilon}{\varepsilon}\right)^2 \, dx}{\int_0^1 s\left(\frac{x}{\varepsilon}\right) w^\varepsilon(x)^2 \, dx}
\]

\[
\leq \varepsilon^{-2} \mu_0 \left(1 - \tau_0^\varepsilon\right) + \varepsilon^{-2} l_p \tau_0^\varepsilon,
\]

where, using the change of variables \(y = (x - n\varepsilon)/\varepsilon \), we defined

\[
\tau_0^\varepsilon = \frac{\varepsilon \int_0^1 s(y) p_0(y)^2 \, dy}{\int_0^1 s\left(\frac{x}{\varepsilon}\right) w^\varepsilon(x)^2 \, dx}
\]

Let us now turn to the lower bound in (38). The idea is to get a lower bound in the Rayleigh quotient (15), using the fact that \(\mu_0 \) and \(l_p \) are themselves given as minima of Rayleigh quotients. In (38) the coefficient \(\tilde{\kappa}_1^\varepsilon \) is going to be defined by

\[
\tilde{\kappa}_1^\varepsilon = \frac{\int_0^1 s\left(\frac{x}{\varepsilon}\right) \phi^\varepsilon(x)^2 \, dx}{\int_0^1 s\left(\frac{x}{\varepsilon}\right) \phi^\varepsilon(x)^2 \, dx}
\]
Indeed,

\[
\int_0^1 d\left(\frac{x}{\varepsilon}\right) |\nabla \phi|^2 dx + \frac{1}{\varepsilon} \left(m(\delta) (\phi^\varepsilon(1))^2 - m(0) (\phi^\varepsilon(0))^2 \right)
\]

\[
= \int_0^{n\varepsilon} d\left(\frac{x}{\varepsilon}\right) |\nabla \phi|^2 dx + \frac{1}{\varepsilon} \left(m(0) (\phi^\varepsilon(n\varepsilon))^2 - m(0) (\phi^\varepsilon(0))^2 \right)
\]

\[
+ \int_{n\varepsilon}^{n\varepsilon+\delta\varepsilon} d\left(\frac{x}{\varepsilon}\right) |\nabla \phi|^2 dx + \frac{1}{\varepsilon} \left(m(\delta) (\phi^\varepsilon(n\varepsilon + \delta\varepsilon))^2 - m(0) (\phi^\varepsilon(n\varepsilon))^2 \right)
\]

\[
\geq \varepsilon^{-2} \mu_0 \int_0^{n\varepsilon} d\left(\frac{x}{\varepsilon}\right) |\nabla \phi|^2 dx + \varepsilon^{-2} l_p \int_{n\varepsilon}^{n\varepsilon+\delta\varepsilon} s\left(\frac{x}{\varepsilon}\right) \phi^2 dx,
\]

thanks to the minimizing properties of \(\mu_0\) and \(l_p\). So, altogether,

\[
\mu_\varepsilon = \frac{\int_0^1 d\left(\frac{x}{\varepsilon}\right) |\nabla \phi|^2 dx + \frac{1}{\varepsilon} \left(m(\delta) (\phi^\varepsilon(1))^2 - m(0) (\phi^\varepsilon(0))^2 \right)}{\int_0^1 s\left(\frac{x}{\varepsilon}\right) (\phi^\varepsilon(x))^2 dx}
\]

\[
\geq \varepsilon^{-2} ((1 - \tilde{\kappa}_1) \mu_0 + \tilde{\kappa}_1 l_p).
\]

The proof of the inequalities (39), involving \(\mu_\delta\), is similar. We use instead

\[
w^\varepsilon(x) = \begin{cases} p_\delta \left(\frac{x}{\varepsilon}\right) & \text{for } 0 \leq x \leq \delta \varepsilon, \\
p_\delta(\delta) \phi_\delta \left(\frac{x - \delta \varepsilon}{\varepsilon}\right) & \text{for } \delta \varepsilon \leq x \leq 1.
\end{cases}
\]

\[\square\]

Proof of Proposition 11. The fact that the convergence is exponential in all cases is already established in Proposition 10. When \(m(0) > 0\) and \(m(\delta) \geq 0\), let us check that the limit of \(\mu_\varepsilon\) is always \(\mu_0\). In the course of the proof of Proposition 10, we have established (32) and (34) which prove that the limit is \(\mu_0\) if either \(\min_{\varepsilon>0} \kappa_\varepsilon^0\) or \(\min_{\varepsilon>0} \chi_\varepsilon^0\) is positive. Lemma 5.3 provides such a result when \(m(0) > 0\) and \(m(\delta) \geq 0\).

The case \(m(0) \leq 0\) and \(m(\delta) < 0\) is handled by similar arguments using (33) and (35).

If \(m(0) > 0\) and \(m(\delta) < 0\), we have

\[
l_q = \min_{\phi \in H^1(\delta,1)} \frac{\int_\delta d(y)|\nabla \phi|^2 dy + (m(0)\phi(1)^2 - m(\delta)\phi(\delta)^2)}{\int_\delta s(y)\phi^2 dy} \geq 0.
\]

\[\text{From Proposition 9, } \min(l_p, l_q) \leq \mu_0 < 0, \text{ therefore } l_p < 0 < l_q. \text{ Then Proposition 10 shows that } \varepsilon^2 \mu_\varepsilon \text{ is an increasing sequence converging to } \min(\mu_0, \mu_\delta). \]
6. The localization regime: a corrector result. In this section, we show that, in the self adjoint case, the first eigenfunction must localize at one of the end-points when, either \(m(0) > 0 \) or \(m(\delta) < 0 \), or both. More precisely, if \(\mu_0 \neq \mu_\delta \), then localization occurs at only one end point. On the other hand, if \(\mu_0 = \mu_\delta \), then two cases can happen: when \(m(0)m(\delta) < 0 \) localization takes place at both endpoints, while, when \(m(0)m(\delta) > 0 \) the first eigenfunction can be computed exactly and localization occurs at only one end point.

We start with this last case which is peculiar because it is equivalent to \(\phi_0 = \phi_\delta \) – up to a renormalization.

Proposition 12. If \(\mu_0 = \mu_\delta \) and \(m(\delta)m(0) > 0 \), then \(\phi_0 = \frac{\phi_\delta}{\phi_{\delta(1-1)}} \), and we have the exact relation

\[
\mu_\varepsilon = \mu_0, \text{ and } u^\varepsilon(x) = \psi(\frac{x}{\varepsilon}) \frac{\phi_0(\frac{x}{\varepsilon})}{\phi_0(0)}.
\]

Conversely, if \(\phi_0 = \frac{\phi_\delta}{\phi_{\delta(1-1)}} \) then \(\mu_0 = \mu_\delta \) and \(m(\delta)m(0) > 0 \).

Remark 7. Proposition 12 is very similar to Proposition 3 when the two Neumann eigenfunctions coincide \(u_N^0 = \frac{\psi_\varepsilon}{\psi_{\delta(1-1)}} \).

Proof. Recall that, in view of Proposition 6, \(\phi_0 \) and \(\phi_\delta \) are exponential-periodic functions, namely \(\phi_0 = \varphi^{0}_\theta \) and \(\phi_\delta = \varphi^{0}_\theta \). Since \(\mu_0 = \mu_\delta \) they are also solutions of the same equation,

\[
-\text{div}_y (d(y)\nabla \phi) = \mu_0 s(y)\phi \text{ in } \mathbb{R}.
\]

If \(m(\delta) \) and \(m(0) \) have the same sign, then the exponent \(\theta_0 \) and \(\theta_\delta \) have the same sign too. But the maps \(\theta \rightarrow \varphi^{0}_\theta \) and \(\theta \rightarrow \nu_{\theta} \), where \((\nu_{\theta}, \varphi_{\theta}) \) is the solution of the spectral problem (16) are one-to-one when restricted to \(\theta \in \mathbb{R}^+ \) or \(\theta \in \mathbb{R}^- \). Thus, it implies that \(\phi_0 = \frac{\phi_{\delta}}{\phi_{\delta(1-1)}} \). This implies in turn that \(x \rightarrow \phi_0(\frac{x}{\varepsilon}) \) is positive, and satisfies both \(\nabla \phi_0(0) = -\frac{1}{\varepsilon} m(0)\phi_0(0) \) and \(\nabla \phi_0(1/\varepsilon) = -\frac{1}{\varepsilon} m(\delta)\phi_0(1/\varepsilon) \), i.e., it is the first eigensolution of problem (13) and then is equal to \(\phi^{\varepsilon} \) after a renormalization.

To handle the other cases, we shall now make full use of the one-dimensional nature of the problem. Notice that problem (13) can be viewed as a linear second order ordinary differential equation, thus \(\phi^{\varepsilon} \) is a combination of any two other linear independent solutions of (13) with different boundary conditions.

We first need the following lemmas.

Lemma 6.1. Assume \(m(0) > 0 \) or \(m(\delta) < 0 \), or both. Then, there exists \(\theta_\varepsilon \neq 0 \) such that \(\mu_\varepsilon = \nu_{\theta_\varepsilon} = \nu_{-\theta_\varepsilon} \) where \(\nu_{\theta} \) is the first eigenvalue of (16).

Proof. According to Lemma 5.1 we have \(\mu_\varepsilon < 0 \) since either \(m(0) > 0 \) or \(m(\delta) < 0 \). Proposition 2, applied to the selfadjoint case (16), tells us that \(\max \nu_{\theta} = \nu_0 = 0 \) and thus the range of \(\nu_{\theta} \) is \(\mathbb{R}^- \). Therefore, there exists \(\theta_\varepsilon \neq 0 \) such that \(\mu_\varepsilon = \nu_{\theta_\varepsilon} = \nu_{-\theta_\varepsilon} \).

Lemma 6.2. Suppose \(m(0) > 0 \) or \(m(\delta) < 0 \), or both. Then,

\[
\phi^{\varepsilon}(0) + \phi^{\varepsilon}(1) \leq \frac{C}{\varepsilon} ||\phi_{\varepsilon}||_{L^1(\Omega)}.
\]

Remark 8. Note that in the case of constant coefficients, \(\phi_0(\cdot/\varepsilon) \) would be the form \(\exp(-B \cdot /\varepsilon) \), and \(||\exp(-B \cdot /\varepsilon)||_{L^1(\Omega)} \leq \varepsilon/B \), so in this sense this estimate is sharp.
Proof. Integrating by part (13) against $D_\varepsilon(x) = \int_0^1 d\left(\frac{\bar{z}}{\varepsilon}\right)^{-1} dz$ shows that

$$
\varepsilon \mu_\varepsilon \int_0^1 s\left(\frac{x}{\varepsilon}\right) D_\varepsilon(x) \phi^\varepsilon dx = m(\delta) \phi^\varepsilon(1) D_\varepsilon(1) + \varepsilon \int_0^1 \nabla \phi^\varepsilon dx
$$

$$
= m(\delta) \phi^\varepsilon(1) D_\varepsilon(1) + \varepsilon(\phi^\varepsilon(1) - \phi^\varepsilon(0)),
$$

since the left hand side is negative and since $-C' < \varepsilon^2 \mu_\varepsilon < -C$ by Proposition 10, we obtain

$$
0 \leq (-m(\delta) \int_0^1 d\left(\frac{x}{\varepsilon}\right)^{-1} dx - \varepsilon) \phi^\varepsilon(1) + \varepsilon \phi^\varepsilon(0) \leq \frac{C}{\varepsilon} \|\phi_\varepsilon\|_{L^1(\Omega)},
$$

thus, if $m(\delta) < 0$, $\phi^\varepsilon(1) \leq \frac{C}{\varepsilon} \|\phi_\varepsilon\|_{L^1(\Omega)}$. Symmetrically, integrating by part (13) against $D_\varepsilon(x) = \int_1^x d\left(\frac{\bar{z}}{\varepsilon}\right)^{-1} dz$ we obtain

$$
\varepsilon \mu_\varepsilon \int_0^1 s\left(\frac{x}{\varepsilon}\right) D_\varepsilon(x) \phi^\varepsilon dx = -m(0) \phi^\varepsilon(0) D_\varepsilon(0) - \varepsilon \int_0^1 \nabla \phi^\varepsilon dx,
$$

so, if $m(0) > 0$, we deduce $\phi^\varepsilon(0) \leq \frac{C}{\varepsilon} \|\phi_\varepsilon\|_{L^1(\Omega)}$. Therefore, when either $m(0) > 0$ or $m(\delta) < 0$, or both, we obtain

$$
\phi^\varepsilon(0) + \phi^\varepsilon(1) \leq \frac{C}{\varepsilon} \|\phi_\varepsilon\|_{L^1(\Omega)},
$$

$$
\square
$$

Lemma 6.3. The first eigencouple $(\nu_\theta, \varphi_\theta^t)$ of (16) is real analytic as function of $\theta \in \mathbb{R}$ with values in $\mathbb{R} \times L^2(Y)$. If the sequence θ_ε, defined in Lemma 6.1, converges to a limit θ_t, then the eigenfunction $\varphi_{\theta_\varepsilon}^t$ can be expanded as follows

$$
\|\varphi_{\theta_\varepsilon}^t(y) - \varphi_{\theta_t}^t(y) - (\theta_\varepsilon - \theta_t) v_{\theta_t}(y)\|_{L^\infty(Y)} = O((\theta_\varepsilon - \theta_t)^2)
$$

(41)

where the function $v_{\theta_t} \in L^2(Y)$ is defined by (44), and

$$
d(t-1)\nabla v_{\theta_t}(t-1) + m(t-1)v_{\theta_t}(t-1) \neq 0.
$$

(42)

Remark 9. Recall that, according to Proposition 6, $\phi_t = \varphi_{\theta_t}^t$.

Proof. The analyticity property is well-known by changing the unknown $\varphi_{\theta_t}^t$ into $\tilde{\varphi}_{\theta_t}^t = e^{-\theta y} \varphi_{\theta_t}^t$ which is a 1-periodic function, defined in a space independent of θ, satisfying an elliptic equation with coefficients that depend quadratically on θ. The variational formulation for $\tilde{\varphi}_{\theta_t}^t$ is

$$
\int_Y d(y)(\nabla \tilde{\varphi}_{\theta_t}^t + \theta \tilde{\varphi}_{\theta_t}^t)(\nabla \tilde{\phi} - \theta \tilde{\phi}) = \nu_\theta \int_Y s(y) \tilde{\varphi}_{\theta_t}^t \tilde{\phi},
$$

(43)

for any 1-periodic test function $\tilde{\phi} \in H^1(Y)$. We conclude using Kato’s Theorem [9] to prove the analyticity of the eigenvector $\tilde{\varphi}_{\theta_t}^t$. Since $\varphi_{\theta_t}^t = e^{\theta y} \tilde{\varphi}_{\theta_t}^t$, (41) holds in the
L^∞ norm by Sobolev embedding. To characterize the function v_{θ_t} we differentiate (43) with respect to θ and obtain for the value θ_t

$$
\int_Y d(y)(\nabla v_{\theta_t} + \theta_t \tilde{v}_{\theta_t})(\nabla \tilde{\phi} - \theta_t \tilde{\phi}) + \int_Y [d(y)\tilde{\phi}^t_{\theta_t}(\nabla \tilde{\phi} - \theta_t \tilde{\phi}) - d(y)(\nabla \tilde{\phi}^t_{\theta_t} + \theta_t \tilde{\phi}^t_{\theta_t})]\tilde{\phi} = \frac{d\nu}{d\theta}(\theta_t) \int_Y s(y)\tilde{\phi}_{\theta_t} + \nu_{\theta_t} \int_Y s(y)\tilde{v}_{\theta_t} \tilde{\phi}.
$$

Introducing the test function $\phi = e^{-\theta_t y} \tilde{\phi}$ and defining $v_{\theta_t} = e^{-\theta_t y} \tilde{v}_{\theta_t}$ we deduce

$$
\int_Y d(y)\nabla v_{\theta_t} \nabla \phi + \int_Y [d(y)\varphi^t_{\theta_t} \nabla \phi - d(y)\nabla \varphi^t_{\theta_t} \phi] = \frac{d\nu}{d\theta}(\theta_t) \int_Y s(y)\varphi^t_{\theta_t} \phi + \nu_{\theta_t} \int_Y s(y)v_{\theta_t} \phi.
$$

(44)

To prove (42), we argue by contradiction. Assume $d(t-1)\nabla v_{\theta_t}(t-1) + m(t-1)v_{\theta_t}(t-1) = 0$. Since $v_{\theta_t}(t-1) = 0$, it implies that $\nabla v_{\theta_t}(t-1) = 0$. As a consequence, the 1-periodic function $\tilde{v}_{\theta_t} = e^{-\theta_t y} v_{\theta_t}$ satisfies the following boundary conditions

$$
\tilde{v}_{\theta_t}(t-1) = \tilde{v}_{\theta_t}(t) = 0 \quad \text{and} \quad \nabla \tilde{v}_{\theta_t}(t-1) = \nabla \tilde{v}_{\theta_t}(t) = 0.
$$

Returning back to the function v_{θ_t} we deduce

$$
v_{\theta_t}(t-1) = v_{\theta_t}(t) = 0 \quad \text{and} \quad \nabla v_{\theta_t}(t-1) = \nabla v_{\theta_t}(t) = 0.
$$

In other words, v_{θ_t} is solution of the over-determined boundary value problem

$$
\begin{aligned}
-\text{div}_y (d(y)\nabla y v_{\theta_t}) - \nu_{\theta_t} s(y) v_{\theta_t} &= \text{div}_y (d(y)\varphi^t_{\theta_t}) + d(y)\nabla y \varphi^t_{\theta_t} + \frac{d\nu}{d\theta}(\theta_t) s(y) \varphi^t_{\theta_t}, \\
v_{\theta_t}(t-1) &= v_{\theta_t}(t) = 0 \\
\nabla y v_{\theta_t}(t-1) &= \nabla y v_{\theta_t}(t) = 0.
\end{aligned}
$$

Multiplying the above equation by $\varphi^t_{\theta_t}$, integrating two times by parts (without any boundary contribution) and using the spectral equation satisfied by $\varphi^t_{\theta_t}$, we deduce

$$
\frac{d\nu}{d\theta}(\theta_t) \int_Y s(y)|\varphi^t_{\theta_t}|^2 = 0, \quad \text{that is,} \quad \frac{d\nu}{d\theta}(\theta_t) = 0,
$$

which leads to a contradiction since $\theta \to \nu(\theta)$ is strictly concave and the only root of $\frac{d\nu}{d\theta}(\theta) = 0$ is $\theta = 0$.

We are now in a position to evaluate how close the solution ϕ^{ε} is to a linear combination of $\varphi_{\pm \theta_s}$. Recall that Proposition 11 implies that the only possible limits of the sequence θ_s are θ_0 or θ_δ.

\textbf{Proposition 13.} Suppose $m(0) > 0$, or $m(\delta) < 0$, or both.

1. If $\mu_0 \neq \mu_s$ and $\theta_s \to \theta_0$, we have

$$
\left|\phi^{\varepsilon}(x) - \left(\frac{\phi^0_{\theta_0}}{\varphi_{\theta_0}^0}(0) \varphi_{\theta_0}(x) + \frac{\phi^0_{\theta_\delta}}{\varphi_{\theta_\delta}^0}(0) e^{2\theta_0 K(\delta)} \varphi_{-\theta_\delta}^0 \left(\frac{x}{\varepsilon}\right)\right)\right| \leq C \varepsilon \|\phi_\varepsilon\|_{L^1(\Omega)} e^{2\theta_0/\varepsilon},
$$

and

$$
|\mu_\varepsilon - \mu_0| = \gamma_0 e^{2\theta_0/\varepsilon} (1 + o(1)), \quad (45)
$$
with
\[
\gamma_0 = \left| \frac{\text{det}(K)}{k(0)} \right| \int_Y s(y)\phi_0(0)\phi_0(0) + m(0)\varphi_0(0)\phi_0(0) \right|.
\]

(46)

2. If \(\mu_0 \neq \mu_3 \) and \(\theta_\varepsilon \to \theta_3 \), we have
\[
\left| \varphi^\varepsilon(x) - \left(\frac{\hat{\varphi}^\varepsilon(1)}{\varphi_{\theta_\varepsilon}^\varepsilon(\varepsilon)} \varphi_{\theta_\varepsilon}^\varepsilon(\varepsilon) + \frac{\hat{\varphi}^\varepsilon(1)}{\varphi_{\theta_\varepsilon}^\varepsilon(\varepsilon)} K(0)\varphi_{\theta_\varepsilon}^\varepsilon(\varepsilon) \right) \right| \leq C_\varepsilon \| \phi_\varepsilon \|_{L^1(\Omega)} e^{-2\theta_3/\varepsilon},
\]
and
\[
|\mu_\varepsilon - \mu_3| = \gamma_1 e^{-2\theta_3/\varepsilon}(1 + o(1)).
\]

(47)

3. If \(\mu_0 = \mu_3 \), we have
\[
\left| \varphi^\varepsilon(x) - \left(\frac{\hat{\varphi}^\varepsilon(0)}{\varphi_{\theta_\varepsilon}^\varepsilon(\varepsilon)} \varphi_{\theta_\varepsilon}^\varepsilon(\varepsilon) + \frac{\hat{\varphi}^\varepsilon(0)}{\varphi_{\theta_\varepsilon}^\varepsilon(\varepsilon)} c_\delta e^{\theta_\varepsilon/\varepsilon} \varphi_{\theta_\varepsilon}^\varepsilon(\varepsilon) \right) \right| \leq C_\varepsilon \| \phi_\varepsilon \|_{L^1(\Omega)} e^{\theta_0/\varepsilon},
\]
with
\[
c_\delta = -\sqrt{-\left(\frac{d(0)\nabla \psi_{\theta_0}(0) + m(0)\psi_{\theta_0}(0)}{d(0)\nabla \psi_{\theta_3}(\varepsilon) + m(\delta)\psi_{\theta_3}(\delta)} \right) \left(\frac{d(\delta)\nabla \psi_{\theta_0}(\delta) + m(\delta)\psi_{\theta_0}(\delta)}{d(0)\nabla \psi_{\theta_3}(\varepsilon) + m(0)\psi_{\theta_3}(\varepsilon)} \right)}
\]
and
\[
|\mu_\varepsilon - \mu_0| = \gamma_2 e^{\theta_0/\varepsilon}(1 + o(1)),
\]
with
\[
\gamma_2 = \sqrt{\frac{k(\delta)}{k(0)}} \int_Y s(y)\phi_0(0)\phi_0(0) + m(0)\varphi_0(0)\phi_0(0) \right|.
\]

(51)

We used the following notations
\[
K(\delta) = \frac{d(\delta)\nabla \psi_{\theta_0}(\delta) + m(\delta)\psi_{\theta_0}(\delta)}{d(\delta)\nabla \varphi_{\theta_\varepsilon}^\varepsilon(\varepsilon) + m(\delta)\varphi_{\theta_\varepsilon}^\varepsilon(\varepsilon)},
\]
\[
K(0) = \frac{d(0)\nabla \psi_{\theta_0}(0) + m(0)\psi_{\theta_0}(0)}{d(0)\nabla \varphi_{\theta_\varepsilon}^\varepsilon(\varepsilon) + m(0)\varphi_{\theta_\varepsilon}^\varepsilon(\varepsilon)},
\]
and
\[
k(\delta) = \frac{d(\delta)\nabla \psi_{\theta_\varepsilon}^\varepsilon(\varepsilon) + m(\delta)\psi_{\theta_\varepsilon}^\varepsilon(\varepsilon)}{d(\delta)\nabla \varphi_{\theta_\varepsilon}^\varepsilon(\varepsilon) + m(\delta)\varphi_{\theta_\varepsilon}^\varepsilon(\varepsilon)}.
\]

Proposition 13 provides a detailed description of the first order correctors for the first eigenpair. The following corollary limit the results of Proposition 13 to the leading order term. This highlights the main trend of the first eigenvectors, at the cost of an exponentially small loss of accuracy. The case when a double localization occurs is a limit case when zero and first order terms are of the same strength. In that case, characterizing the main trend means calculating first order correctors.

Corollary 1. Suppose \(\theta_0 > 0 \), or \(\theta_3 < 0 \), or both. Let \(\phi^\varepsilon_0 \) be the positive, bounded and \(Y \)-periodic function given by \(\phi^\varepsilon_0 = e^{-\theta_0} \varphi^\varepsilon_0 \) where \(\varphi^\varepsilon_0 \) is the first eigenfunction of \((16)\).
1. If $\mu_0 \neq \mu_\delta$, the first eigenvector localize in one of the endpoints. Indeed when $\theta_0 < 0$ and either $\theta_\delta \leq 0$, or $\theta_\delta > 0$ and $\mu_0 < \mu_\delta$, we have $L = \mu_\delta$,

$$
\left\| \phi^\varepsilon(x) - \phi^\varepsilon(0) e^{\frac{\theta_0 x}{\varepsilon}} \frac{\varphi_{\theta_0}(x)}{\varphi_{\theta_0}(0)} \right\|_{L^\infty(\Omega)} \leq C \frac{e^{\theta_0/\varepsilon}}{\varepsilon} \| \phi^\varepsilon \|_{L^1(\Omega)}
$$

and $|\mu_\varepsilon - \mu_0| = \gamma_0 e^{\theta_0/\varepsilon} (1 + o(1))$ where γ_0 is defined by (46).

Alternatively when $\theta_\delta > 0$ and either $\theta_0 \geq 0$, or $\theta_0 < 0$ and $\mu_\delta < \mu_0$, we have $L = \mu_\delta$,

$$
\left\| \phi^\varepsilon(x) - \phi^\varepsilon(1) e^{\frac{\theta_\delta (x-1)}{\varepsilon}} \frac{\varphi_{\theta_\delta}(x)}{\varphi_{\theta_\delta}(\delta)} \right\|_{L^\infty(\Omega)} \leq C \frac{e^{-\theta_\delta/\varepsilon}}{\varepsilon} \| \phi^\varepsilon \|_{L^1(\Omega)}
$$

and $|\mu_\varepsilon - \mu_\delta| = \gamma_1 e^{-\theta_\delta/\varepsilon} (1 + o(1))$ where γ_1 is defined by (48).

2. If $\mu_0 = \mu_\delta$, then the eigenvector could mix both boundary layers. We obtain

$$
\left\| \phi^\varepsilon(x) - \phi^\varepsilon(0) e^{x \frac{\theta_0}{\varepsilon}} \frac{\varphi_{\theta_0}(x)}{\varphi_{\theta_0}(0)} - \phi^\varepsilon(0) e^{x \frac{\theta_0}{\varepsilon}} \frac{\varphi_{\theta_0}(x)}{\varphi_{\theta_0}(0)} \right\|_{L^\infty(\Omega)} = C \frac{e^{\theta_0/\varepsilon}}{\varepsilon} \| \phi^\varepsilon \|_{L^1(\Omega)}
$$

and $|\mu_\varepsilon - \mu_\delta| = \gamma_0 e^{\theta_0/\varepsilon} (1 + o(1))$ where γ_0 is defined by (51) and c_0 is defined by (49). Note that in this last case $\theta_0 = -\theta_\delta < 0$.

Proof of Corollary 1. To prove this corollary starting from Proposition 13, we notice that, when by Proposition 11, if $\theta_0 < 0$ and $\theta_\delta \leq 0$, or if $\theta_0 < 0$, $\theta_\delta > 0$ and $\mu_0 < \mu_\delta$, we have $L = \mu_\delta$, θ_ε tends to $\theta_\delta < 0$ and that $\theta_\varepsilon - \theta_0 = O(e^{2\theta_0/\varepsilon})$. This implies that

$$
\varphi^0_{\theta_\varepsilon}(x) = \phi_0 \left(\frac{x}{\varepsilon}\right) + O(e^{2\theta_0/\varepsilon}), \quad \varphi^{-1}_{\theta_\varepsilon} = \phi_0^{-1} + O(e^{\theta_0/\varepsilon})
$$

and $e^{2\theta_0/\varepsilon} K(\delta) \varphi^0_{\theta_\varepsilon}(x) = O(e^{\theta_0/\varepsilon})$. Since

$$
\phi_0 \left(\frac{x}{\varepsilon}\right) = e^{\frac{\theta_0}{\varepsilon}} \frac{\varphi^0_{\theta_0} \left(\frac{x}{\varepsilon}\right)}{\varphi^0_{\theta_0}(0)},
$$

we have proved the first estimate.

In a same way, when either $\theta_\delta \geq 0$ and $\theta_\delta > 0$, or $\theta_0 < 0$, $\theta_\delta > 0$ and $\mu_\delta < \mu_0$, by Proposition 11, $L = \mu_\delta$, θ_ε tends to $\theta_\delta > 0$, and $\theta_\varepsilon - \theta_\delta = O(e^{-2\theta_\delta/\varepsilon})$. We then obtain

$$
\varphi^\delta_{\theta_\varepsilon} = \phi_\delta + O(e^{-2\theta_\delta/\varepsilon}), \quad \varphi^{-1}_{\theta_\varepsilon} = \phi^{-1}_\delta + O(e^{-2\theta_\delta/\varepsilon})
$$

and $\frac{K(0)}{\varphi^\delta_{\theta_\varepsilon}(x \varepsilon)} \varphi^\delta_{\theta_\varepsilon}(x \varepsilon) = O(e^{-2\theta_\delta/\varepsilon})$. As before, we write

$$
\frac{\phi_\delta \left(\frac{x}{\varepsilon}\right)}{\phi_\delta \left(\frac{1}{\varepsilon}\right)} = e^{\frac{\theta_\delta (x-1)}{\varepsilon}} \frac{\varphi^\delta_{\delta}(x)}{\varphi^\delta_{\delta}(1)} = e^{\frac{\theta_\delta (x-1)}{\varepsilon}} \frac{\varphi^\delta_{\theta_\delta}(x)}{\varphi^\delta_{\theta_\delta}(1)}.
$$

Finally, when $\mu_0 = \mu_\delta$, $m(0) > 0$ and $m(\delta) < 0$, θ_ε tends to $\theta_0 < 0$ and $\theta_\varepsilon - \theta_0 = O(e^{\theta_0/\varepsilon})$. This implies that $\exp(\theta_\varepsilon n) = \exp(\theta_0 n) (1 + o(1))$, and therefore that

$$
\varphi^0_{\theta_\varepsilon}(x \varepsilon) = \phi_0 \left(\frac{x}{\varepsilon}\right) + O(e^{\theta_0/\varepsilon}) \quad \text{and} \quad \varphi^{-1}_{\theta_\varepsilon}(x \varepsilon) = \phi_\delta \left(\frac{x}{\varepsilon}\right) + O(e^{\theta_0/\varepsilon}).
$$
Together with the observation that
\[\phi^0_{\theta_0}(0) = \phi_0(0)(1 + O(\epsilon^{2\theta_0/\epsilon})), \]
this shows that
\[\frac{1}{\phi^0_{\theta_0}(0)} = \frac{1}{\phi_0(0)} + O(\epsilon^{2\theta_0/\epsilon}). \]
This allows us to conclude.

Proof of Proposition 13. Since \(\varphi^1_{\theta_0}(y) \) and \(\varphi^2_{\theta_0}(y) \) are linearly independent solutions of (13), we have
\[\phi^\varepsilon = \alpha^\varepsilon \varphi^1_{\theta_0} \left(\frac{\eta}{\varepsilon} \right) + \beta^\varepsilon \varphi^2_{\theta_0} \left(\frac{\eta}{\varepsilon} \right). \]
Inserting the boundary conditions of problem (13), the existence of of a non trivial solution of (13), we have
\[\varphi^\varepsilon = \alpha^\varepsilon \varphi^1_{\theta_0} \left(\frac{\eta}{\varepsilon} \right) + \beta^\varepsilon \varphi^2_{\theta_0} \left(\frac{\eta}{\varepsilon} \right). \]
This identity can also be written as
\[\left| \begin{array}{cc} (d\nabla \varphi^1_{\theta_0} + m \varphi^1_{\theta_0}) (0) & (d\nabla \varphi^2_{\theta_0} + m \varphi^2_{\theta_0}) (0) \\ (d\nabla \varphi^1_{\theta_0} + m \varphi^1_{\theta_0}) (\delta) & (d\nabla \varphi^2_{\theta_0} + m \varphi^2_{\theta_0}) (\delta) \end{array} \right| = 0. \]
This identity can also be written as
\[\frac{d(0)\nabla \varphi^1_{\theta_0} + m(0)\varphi^1_{\theta_0}}{d(0)\nabla \varphi^2_{\theta_0} + m(0)\varphi^2_{\theta_0}} = 0. \]
the second relation being a consequence of the relation
\[\frac{\varphi^1_{\theta_0} (\epsilon^{-1}) \varphi^2_{\theta_0} (\delta)}{\varphi^1_{\theta_0} (\delta) \varphi^2_{\theta_0} (\epsilon^{-1})} = \frac{\varphi^1_{\theta_0} (n + \delta) \varphi^2_{\theta_0} (\delta)}{\varphi^1_{\theta_0} (\delta) \varphi^2_{\theta_0} (n + \delta)} = e^{2\theta_0 n}. \]
At \(x = 0 \), we obtain the following additional relation
\[\alpha^\varepsilon \varphi^1_{\theta_0} (0) + \beta^\varepsilon \varphi^2_{\theta_0} (0) = \phi^\varepsilon (0). \]
The key point of the proof will be the computation of \(\alpha^\varepsilon \) and \(\beta^\varepsilon \).

We will now consider three cases. In the first one, \(\theta_\varepsilon \) tends to \(\theta_0 \), with \(\theta_0 < 0 \), and \(\mu_0 \neq \mu_\delta \). In the second one, \(\theta_\varepsilon \) tends to \(\theta_\delta \), with \(\theta_\delta > 0 \), and \(\mu_0 \neq \mu_\delta \). Finally, we will consider the limit case when \(\theta_\varepsilon \) tends to \(\theta_0 \), with \(\theta_0 < 0 \), and \(\mu_0 = \mu_\delta \). Proposition 11 shows that these are the only possible cases when concentration occurs.

Case 1. Assume that \(\mu_0 \neq \mu_\delta \) and \(\theta_\varepsilon \) tends to \(\theta_0 \), with \(\theta_0 < 0 \). This implies that \(\varphi^0_{\theta_0} \) tends to \(\phi_0 \). Define \(\eta := \theta_\varepsilon - \theta_0 \). Thanks to Lemma 6.3, the following first order expansions in \(\eta \) hold
\[\varphi^0_{\theta_0}(y) = \phi_0(y) + \eta \varphi^0_{\theta_0}(y) + O(\eta^2) \]
\[\varphi^0_{\theta_0}(y) = \phi_{-\theta_0}(y) + O(\eta). \]
Inserting this ansatz in (54), we obtain
\[\frac{\eta(d\nabla \varphi^0_{\theta_0} + m \varphi^0_{\theta_0})(0) + O(\eta^2)}{d\nabla \varphi^0_{\theta_0} + m \varphi^0_{\theta_0})(0) + O(\eta)} = \frac{(d\nabla \varphi^0_{\theta_0} + m \varphi^0_{\theta_0})(\delta) + O(\eta)}{d\nabla \varphi^0_{\theta_0} + m \varphi^0_{\theta_0})(\delta) + O(\eta.)} e^{2\theta_0 n}. \]
Note that $d(\delta)\nabla \varphi_{-\theta_0}^0(\delta) + m(\delta)\varphi_{-\theta_0}^0(\delta) \neq 0$, as this would imply $\mu_0 = \mu_\delta$, which we assume does not hold. Thanks to Lemma 6.3 we know that, $d(0)\nabla \nu_0(0) + m(0)\nu_0(0) \neq 0$, therefore we can write
\[
\eta = \frac{d(\delta)\nabla \phi_0(\delta) + m(\delta)\phi_0(\delta)}{d(\delta)\nabla \varphi_{-\theta_0}^0(\delta) + m(\delta)\varphi_{-\theta_0}^0(\delta)} = \frac{d(0)\nabla \phi_0(0) + m(0)\phi_0(0)}{d(0)\nabla \varphi_{-\theta_0}^0(0) + m(0)\varphi_{-\theta_0}^0(0)} e^{2\eta n} + o(e^{2\eta n}).
\] (55)

This provides a first order correction (in exponential terms) for θ_ε. This value of η allows us to compute α^ε and β^ε, namely
\[
\beta^\varepsilon = -\eta \alpha^\varepsilon \frac{d(0)\nabla \nu_0(0) + m(0)\nu_0(0)}{d(0)\nabla \varphi_{-\theta_0}^0(0) + m(0)\varphi_{-\theta_0}^0(0)} + O(\alpha^\varepsilon \eta^2)
\]
\[
\alpha^\varepsilon = \frac{\phi^\varepsilon(0)}{\varphi_{0,\delta}(0)} + \phi^\varepsilon(0)O(\eta).
\]

Turning now to the solution ϕ^ε, we have obtained
\[
\phi^\varepsilon = \alpha^\varepsilon \varphi_{0,\delta}(\frac{x}{\varepsilon}) + \beta^\varepsilon \varphi_{-\theta_0}(\frac{x}{\varepsilon}),
\]
\[
= \frac{\phi^\varepsilon(0)}{\varphi_{0,\delta}(0)} \varphi_{0,\delta}(\frac{x}{\varepsilon}) - \frac{\phi^\varepsilon(0)}{\varphi_{0,\theta_0}(0)} \varphi_{0,\theta_0}(\frac{x}{\varepsilon}) + \frac{d(\delta)\nabla \phi_0(\delta) + m(\delta)\phi_0(\delta)}{d(\delta)\nabla \varphi_{-\theta_0}(\delta) + m(\delta)\varphi_{-\theta_0}(\delta)} e^{2\eta n} \varphi_{0,\delta}(\frac{x}{\varepsilon})
\]
\[
\phi^\varepsilon(0)O(e^{2\eta n}).
\]

Using Lemma 6.2, the proof of the asymptotic formula for the eigenvector is complete. Let us now turn to the eigenvalue. Testing (44) against $\phi = \varphi_{0,\delta}$, we obtain
\[
\int_Y (d(y)\phi_0 \nabla \varphi_{-\theta_0}^0 - d(y)\nabla \phi_0 \varphi_{0,\theta_0}) dy = \frac{d\mu}{d\theta}(\theta_0) \int_Y s(y)\phi_0 \varphi_{0,\theta_0} dy.
\] (56)

Note that the wronskian $d\phi_0 \nabla \varphi_{0,\theta_0} - d\nabla \phi_0 \varphi_{0,\theta_0}$ is a constant, therefore
\[
\int_Y (d(y) \phi_0 \nabla \varphi_{0,\theta_0} - \nabla \phi_0 \varphi_{0,\theta_0}) dy = d(0)\nabla \varphi_{0,\theta_0}(0) + m(0)\varphi_{0,\theta_0}(0).
\]

Thanks to Lemma 6.3, ν_0 is analytic, with $\nu_0 = \mu_0$ and $\nu_{\theta_\varepsilon} = \mu_\varepsilon$. We write
\[
\mu_\varepsilon = \mu_0 + \eta \frac{d\mu}{d\theta}(\theta_0) + O(\eta^2).
\]

and inserting (55) and (56) we obtain
\[
\mu_\varepsilon = \mu_0 + \frac{K(\delta)}{K(0)} \frac{d(0)\nabla \varphi_{0,\theta_0}(0) + m(0)\varphi_{0,\theta_0}(0)}{\int_Y s(y)\phi_0 \varphi_{0,\theta_0}} e^{2\eta_0/\varepsilon} (1 + o(1))
\]
which is (45).

Case 2. If $\mu_0 \neq \mu_\delta$ and θ_ε tends to θ_δ, then $\varphi_{0,\varepsilon}^\delta$ tends to ϕ_δ. The same strategy and similar arguments shows that
\[
\eta = \frac{d(0)\nabla \phi_{0,\delta}(0) + m(0)\phi_{0,\delta}(0) - d(\delta)\nabla \varphi_{-\theta_0}^\delta(\delta) + m(\delta)\varphi_{-\theta_0}^\delta(\delta)}{d(\delta)\nabla \varphi_{-\theta_0}^\delta(\delta) + m(\delta)\varphi_{-\theta_0}^\delta(\delta)} e^{2\eta n} + o(e^{2\eta n}),
\]

and, in turn, using $\phi^\varepsilon(1) = \alpha^\varepsilon \varphi_{0,\delta}(\frac{1}{\varepsilon}) + \beta^\varepsilon \varphi_{-\theta_0}(\frac{1}{\varepsilon})$ we obtain
\[
\beta^\varepsilon = -\eta \alpha^\varepsilon e^{2\eta n} \frac{d(\delta)\nabla \varphi_{0,\delta}(\delta) + m(\delta)\varphi_{0,\delta}(\delta)}{d(\delta)\nabla \varphi_{-\theta_0}^\delta(\delta) + m(\delta)\varphi_{-\theta_0}(\delta)} + O(e^{2\eta n} \alpha^\varepsilon \eta^2).
\]
and

$$\alpha^x = \phi^x(1) + \phi^x(1)O(\eta).$$

This implies

$$\phi^x = \frac{\phi^x(1)}{\varphi^\delta_{\theta_x}(1/\varepsilon)} \varphi^\delta_{\theta_x}(x/\varepsilon) - \frac{\phi^x(1)}{\varphi^\delta_{\theta_x}(1/\varepsilon)} d(0)\nabla \phi_\delta(0) + m(0)\phi_\delta(0) d(0)\nabla \varphi^\delta_{\theta_x}(0) + m(0)\varphi^\delta_{\theta_x}(0) \varphi^\delta_{-\theta_x}(x/\varepsilon) + \phi^x(0)O(e^{-2\theta_x n}),$$

which is the announced result. The proof of (47) follows that of the first case.

Case 3. If \(\mu_0 = \mu_\delta\), then \(\phi_\delta = \varphi^\delta_{-\theta_0}\), and we can rewrite the expansion as follows

$$\begin{align*}
\varphi^\delta_{\theta_0} &= \phi_0 + \eta v_{\theta_0} + O(\eta^2) \\
\varphi^\delta_{-\theta_0} &= \phi_\delta - \eta v_{\theta_0} + O(\eta^2).
\end{align*}$$

In this case \(\varphi^\delta_{\theta_0} = \phi_0\) satisfies the boundary condition at 0 whereas \(\varphi^\delta_{-\theta_0} = \phi_\delta\) satisfies the boundary conditions at \(\delta\), and equation (54) shows that

$$\frac{\eta^2 (d\nabla v_{\theta_0} + m v_{\theta_0}) (0) + O(\eta^3)}{(d\nabla \phi_\delta + m \phi_\delta) (0) + O(\eta)} = - \frac{(d\nabla \phi_0 + m \phi_0) (\delta) + O(\eta)}{(d\nabla v_{\theta_0} + m v_{\theta_0}) (\delta) + O(\eta)} e^{2\theta_x n}.$$

Thus

$$\eta = \sqrt{- \frac{d(\delta)\nabla \phi_0 (\delta) + m(\delta)\phi_0 (\delta)}{d(\delta)\nabla v_{\theta_0} (\delta) + m(\delta)v_{\theta_0} (\delta)}} \frac{d(0)\nabla \phi_\delta (0) + m(0)\phi_\delta (0)}{d(0)\nabla v_{\theta_0} (0) + m(0)v_{\theta_0} (0)} e^{\theta_x n} + o(e^{\theta_x n}).$$

Following the same steps as in the first case, we obtain

$$\phi^x(x) = \frac{\phi^x(0)}{\varphi^0_{\theta_x}(0)} \varphi^0_{\theta_x}(x/\varepsilon) - \frac{\phi^x(0)}{\varphi^0_{\theta_x}(0)} d(0)\nabla v_{\theta_0} (0) + m(0)v_{\theta_0} (0) d(0)\nabla \phi_\delta (0) + m(0)\phi_\delta (0) \varphi^\delta_{-\theta_x}(x/\varepsilon) + \phi^x(0)O(e^{\theta_x n}),$$

and finally

$$\phi^x(x) = \frac{\phi^x(0)}{\varphi^0_{\theta_x}(0)} \varphi^0_{\theta_x}(x/\varepsilon) + \frac{\phi^x(0)}{\varphi^0_{\theta_x}(0)} c_\delta e^{\theta_x n} \varphi^\delta_{-\theta_x}(x/\varepsilon) + \phi^x(0)O(e^{\theta_x n}),$$

with

$$c_\delta = - \sqrt{- \frac{d(\delta)\nabla \phi_0 (\delta) + m(\delta)\phi_0 (\delta)}{d(\delta)\nabla v_{\theta_0} (\delta) + m(\delta)v_{\theta_0} (\delta)}} \frac{d(0)\nabla \phi_\delta (0) + m(0)\phi_\delta (0)}{d(0)\nabla v_{\theta_0} (0) + m(0)v_{\theta_0} (0)} \times \frac{d(0)\nabla v_{\theta_0} (0) + m(0)v_{\theta_0} (0)}{d(0)\nabla \phi_\delta (0) + m(0)\phi_\delta (0)}
\begin{align*}
&= \sqrt{- \frac{d(0)\nabla v_{\theta_0} (0) + m(0)v_{\theta_0} (0)}{d(\delta)\nabla \phi_0 (\delta) + m(\delta)\phi_0 (\delta)}} \frac{d(0)\nabla \phi_\delta (\delta) + m(\delta)\phi_\delta (\delta)}{d(\delta)\nabla v_{\theta_0} (\delta) + m(\delta)v_{\theta_0} (\delta)}
\end{align*}$$

as claimed. The proof of (50) follows that of the first case. \(\square\)
Acknowledgements. Grégoire Allaire is a member of the DEFI project at INRIA Saclay Ile-de-France and is partially supported by the Chair "Mathematical modelling and numerical simulation, F-EADS - Ecole Polytechnique - INRIA". Yves Capdeboscq is supported by the EPSRC Science and Innovation award to the Oxford Centre for Nonlinear PDE (EP/E035027/1). Marjolaine Puel acknowledges support from the project No. BLAN07-2 212988 entitled "QUATRAIN" and funded by the Agence Nationale de la Recherche. This material is based upon work supported by the National Science Foundation under agreement No. DMS-0635607. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

E-mail address: gregoire.allaire@polytechnique.fr
E-mail address: capdeboscq@maths.ox.ac.uk
E-mail address: marjolaine.puel@math.univ-toulouse.fr