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1. Introduction

Many problems in automatic control, system identification, signal processing, machine learning, operations

research and statistics can be posed as a stochastic optimization problem, i.e., as a minimization (or maxi-

mization) of an unknown objective function whose values are available only through noisy observations. Such

a problem can be solved efficiently by stochastic gradient search (also known as the stochastic gradient al-

gorithm). Stochastic gradient search is a procedure of the stochastic approximation type which iteratively

approximates the minima of the objective function using a statistical or Monte Carlo estimator of the gra-

dient of the objective function. Often, the estimator is biased, since unbiased gradient estimation is usually

either too computationally expensive or not available at all. As a result of using biased gradient estimates,

the stochastic gradient search is also biased, i.e., the algorithm does not converge to the minima, but to

their vicinity. In order to interpret the results produced by such an algorithm and to tune the algorithm’s

parameters (e.g., to achieve a better bias/variance tradeoff and a better convergence rate), it is important to

study the asymptotic behavior and the asymptotic bias of the algorithm iterates.

Despite its practical and theoretical importance, the asymptotic behavior of stochastic gradient search

using biased gradient estimates (also referred to as biased stochastic gradient search) has not attracted much

attention in the literature. To the best of the authors’ knowledge, this has only been analyzed in [12], [14],

[15] and [16]. Although these results provide a good insight, they hold under restrictive conditions which are

very hard to verify for complex stochastic gradient algorithms. Moreover, unless the objective function is of a

simple form (e.g., convex or polynomial), none of these papers offers explicit bounds on the asymptotic bias

of the algorithm iterates.

In this paper, we provide an original analysis of the asymptotic behavior of biased stochastic gradient search.

Using arguments based on dynamic system theory (chain-recurrence) and differential geometry (Yomdin

theorem and Lojasiewicz inequalities), we prove that the algorithm iterates converge to a vicinity of the set

of minima. Relying on the same arguments, we also derive upper bounds on the radius of the vicinity (i.e.,

on the asymptotic bias of the algorithm iterates). Our results hold under mild and easily verifiable conditions

and cover a broad class of complex stochastic gradient algorithms. We illustrate here how these results

can be applied to the asymptotic analysis of a popular policy-gradient (reinforcement) learning algorithm

proposed in [2]. In [33] (an extended version of this paper), these results have also been used to evaluate
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the asymptotic bias of an adaptive population Monte Carlo method and the asymptotic bias of recursive

maximum split-likelihood estimation procedure for hidden Markov models.

The rest of this paper is organized as follows. The main results are presented in Section 2, where the

biased stochastic gradient search is analyzed. In Section 3, these general results are applied to stochastic

gradient algorithms with Markovian dynamics. In Section 4, we apply the results of Sections 2 and 3 to a

policy-gradient algorithm. The results presented in Sections 2 – 4 are proved in Sections 5 – 8.

2. Main Results

In this section, the asymptotic behavior of the following algorithm is analyzed:

θn+1 = θn − αn(∇f(θn) + ξn), n ≥ 0. (1)

Here, f : Rdθ → R is a differentiable function, while {αn}n≥0 is a sequence of positive real numbers. θ0 is an

Rdθ -valued random variable defined on a probability space (Ω,F , P ), while {ξn}n≥0 is an Rdθ -valued stochastic

process defined on the same probability space. To allow more generality, we assume that for each n ≥ 0, ξn is

a random function of θ0, . . . , θn. In the area of stochastic optimization, recursion (1) is known as a stochastic

gradient search or stochastic gradient algorithm. The recursion minimizes the objective function f(·). The

term ∇f(θn) + ξn is interpreted as an estimator of the gradient ∇f(θn), ξn representing the estimator’s noise.

For further details, see [27], [30] and references given therein.

Throughout the paper, the following notation is used. ‖ · ‖ and d(·, ·) stand for the Euclidean norm and

the distance induced by the Euclidean norm (respectively). For t ∈ (0,∞) and n ≥ 0, a(n, t) is the integer

defined as

a(n, t) = max

{
k ≥ n :

k−1∑
i=n

αi ≤ t

}
.

S and f(S) denote the sets of stationary points and critical values of f(·), i.e.,

S = {θ ∈ Rdθ : ∇f(θ) = 0}, f(S) = {f(θ) : θ ∈ S}. (2)

For θ ∈ Rdθ , π(· ; θ) is the solution to the ODE dθ/dt = −∇f(θ) satisfying π(0; θ) = θ. R denotes the set

of chain-recurrent points of this ODE, i.e., θ ∈ R if and only if for any δ, t ∈ (0,∞), there exist an integer

N ≥ 1, real numbers t1, . . . , tN ∈ [t,∞) and vectors ϑ1, . . . , ϑN ∈ Rdθ (each of which can depend on θ, δ, t)

such that

‖ϑ1 − θ‖ ≤ δ, ‖π(tN ;ϑN )− θ‖ ≤ δ, ‖ϑk+1 − π(tk;ϑk)‖ ≤ δ (3)

for 1 ≤ k < N .

Elements of R can be considered as limits to slightly perturbed solutions to the ODE dθ/dt = −∇f(θ). As

the piecewise linear interpolation of sequence {θn}n≥0 falls into the category of such solutions, the concept of

chain-recurrence is tightly connected to the asymptotic behavior of stochastic gradient search. In [3], [4], it

has been shown that for unbiased gradient estimates, all limit points of {θn}n≥0 belong to R and that each

element of R can potentially be a limit point of {θn}n≥0 with a non-zero probability.

If f(·) is Lipschitz continuously differentiable, it can be established that S ⊆ R. If additionally f(S) is of a

zero Lebesgue measure (which holds when f(S) is discrete or when f(·) is dθ-times continuously differentiable),

then S = R. However, if f(·) is only Lipschitz continuously differentiable, then it is possible to have R\S 6= ∅
(see [18, Section 4]). Hence, in general, a limit point of {θn}n≥0 is in R but not necessarily in S. For more

details on chain-recurrence, see [3], [4], [12] and references therein. Given these results, it will prove useful to

involve both R and S in the asymptotic analysis of biased stochastic gradient search.

The algorithm (1) is here analyzed under the following assumptions:

Assumption 2.1. limn→∞ αn = 0 and
∑∞
n=0 αn =∞.
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Assumption 2.2. {ξn}n≥0 admits the decomposition ξn = ζn + ηn for each n ≥ 0. {ζn}n≥0 and {ηn}n≥0 are

Rdθ -valued stochastic processes (defined on (Ω,F , P )) which satisfy

lim
n→∞

max
n≤k<a(n,t)

∥∥∥∥∥
k∑
i=n

αiζi

∥∥∥∥∥ = 0, lim sup
n→∞

‖ηn‖ <∞ (4)

almost surely on {supn≥0 ‖θn‖ <∞} for any t ∈ (0,∞).

Assumption 2.3.a. ∇f(·) is locally Lipschitz continuous on Rdθ .

Assumption 2.3.b. f(·) is p-times differentiable on Rdθ , where p > dθ.

Assumption 2.3.c. f(·) is real-analytic on Rdθ .

Remark. Due to Assumption 2.1, a(n, t) is well-defined and finite for all t ∈ (0,∞), n ≥ 0.

Assumption 2.1 corresponds to the step-size sequence {αn}n≥0 and is commonly used in the asymptotic

analysis of stochastic gradient algorithms. It is satisfied if αn = n−a for n ≥ 1, where a ∈ (0, 1].

Assumption 2.2 is a noise condition. It can be interpreted as a decomposition of the gradient estimator’s

noise {ξn}n≥0 into a zero-mean sequence {ζn}n≥0 (which is averaged out by step-sizes {αn}n≥0) and the

estimator’s bias {ηn}n≥0. Assumption 2.2 is satisfied if {ζn}n≥0 is a martingale-difference or mixingale

sequence, and if {ηn}n≥0 are continuous functions of {θn}n≥0. It also holds for gradient search with Markovian

dynamics (see Section 3). If the gradient estimator is asymptotically unbiased (i.e., limn→∞ ηn = 0 almost

surely), Assumption 2.2 reduces to the Kushner-Clark condition, the weakest noise assumption under which

the almost sure convergence of (1) can be demonstrated.

Assumptions 2.3.a, 2.3.b and 2.3.c are related to the objective function f(·) and its analytical properties.

Assumption 2.3.a is involved in practically any asymptotic result for stochastic gradient search (as well as in

many other asymptotic and non-asymptotic results for stochastic and deterministic optimization). Although

much more restrictive than Assumption 2.3.a, Assumptions 2.3.b and 2.3.c hold for a number of algorithms

routinely used in engineering, statistics, machine learning and operations research. In Section 4, Assumptions

2.3.b and 2.3.c are shown to hold for a policy-gradient algorithm. In [33], the same assumptions are verified

for an adaptive population Monte Carlo method and for recursive maximum split-likelihood estimation in

hidden Markov models. In [31], Assumption 2.3.c (which is a special case of Assumption 2.3.b) has been

shown to hold for recursive maximum (full) likelihood estimation in hidden Markov models. In [32], the same

assumption has also been verified for supervised and temporal-difference learning, online principal component

analysis, Monte Carlo optimization of controlled Markov chains and recursive parameter estimation in linear

stochastic systems.

Compared to Assumption 2.3.a, Assumptions 2.3.b and 2.3.c allow some sophisticated results from dif-

ferential geometry to be applied to the asymptotic analysis of stochastic gradient search. More specifically,

Yomdin theorem (a qualitative version of Morse-Sard theorem; see [34] and Proposition 6.1 in Section 6) can

be applied to functions satisfying Assumption 2.3.b, while Lojasiewicz inequalities (see [23], [24]; see also

Proposition 6.2 in Section 6) hold for functions verifying Assumption 2.3.c. Using Yomdin theorem and Lo-

jasiewicz inequalities, a more precise characterization of the asymptotic bias of the stochastic gradient search

can be obtained (see Parts (ii) and (iii) of Theorem 2.1).

In order to state the main results of this section, we need some further notation. Let η denote the asymptotic

magnitude of the gradient estimator’s bias {ηn}n≥0, i.e.,

η = lim sup
n→∞

‖ηn‖. (5)

Moreover, for a compact set Q ⊂ Rdθ , let ΛQ denote the event

ΛQ = lim inf
n→∞

{θn ∈ Q} =

∞⋃
n=0

∞⋂
k=n

{θk ∈ Q}. (6)

With this notation, our main result on the asymptotic bias of the recursion (1) can be stated as follows.
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Theorem 2.1. Suppose that Assumptions 2.1 and 2.2 hold. Let Q ⊂ Rdθ be any compact set. Then, the

following is true:

(i) If f(·) satisfies Assumption 2.3.a, there exists a (deterministic) non-decreasing function ψQ : [0,∞) →
[0,∞) (independent of η and depending only on f(·)) such that limt→0 ψQ(t) = ψQ(0) = 0 and

lim sup
n→∞

d(θn,R) ≤ ψQ(η) (7)

almost surely on ΛQ.

(ii) If f(·) satisfies Assumption 2.3.b, there exists a real number KQ ∈ (0,∞) (independent of η and depend-

ing only on f(·)) such that

lim sup
n→∞

‖∇f(θn)‖ ≤ KQη
q/2, lim sup

n→∞
f(θn)− lim inf

n→∞
f(θn) ≤ KQη

q (8)

almost surely on ΛQ, where q = (p− dθ)/(p− 1).

(iii) If f(·) satisfies Assumption 2.3.c, there exist real numbers rQ ∈ (0, 1), LQ ∈ (0,∞) (independent of η

and depending only on f(·)) such that

lim sup
n→∞

d(θn,S) ≤ LQηrQ , lim sup
n→∞

‖∇f(θn)‖ ≤ LQη1/2, lim sup
n→∞

d(f(θn), f(S)) ≤ LQη (9)

almost surely on ΛQ.

Theorem 2.1 is proved in Sections 5 and 6, while its global version is provided in Appendix 1.

Remark. If Assumption 2.3.b (or Assumption 2.3.c) is satisfied, then S = R. Hence, under Assumption

2.3.b, (7) still holds if R is replaced with S.

Remark. Function ψQ(·) depends on f(·) in two ways. First, it depends on f(·) through R and its geometric

properties. Second, it depends on f(·) through upper bounds of ‖∇f(·)‖ and Lipschitz constants of ∇f(·). An

explicit construction of ψQ(·) is provided in the proof of Part (i) of Theorem 2.1 (Section 5).

Remark. Like ψQ(·), constants KQ and LQ depend on f(·) through upper bounds of ‖∇f(·)‖ and Lipschitz

constants of ∇f(·). KQ and LQ also depend on f(·) through the Yomdin and Lojasiewicz constants (quantities

MQ, M1,Q, M2,Q specified in Propositions 6.1, 6.2). Explicit formulas for KQ and LQ are included in the

proof of Parts (ii) and (iii) of Theorem 2.1 (Section 6).

According to the literature on stochastic optimization and stochastic approximation, stochastic gradient

search with unbiased gradient estimates (the case when η = 0) exhibits the following asymptotic behavior.

Under mild conditions, sequences {θn}n≥0 and {f(θn)}n≥0 converge to R and f(R) (respectively), i.e,

lim
n→∞

d(θn,R) = 0, lim
n→∞

d(f(θn), f(R)) = 0 (10)

almost surely on {supn≥0 ‖θn‖ < ∞} (see [4, Proposition 4.1, Theorem 5.7] which hold under Assumptions

2.1, 2.2, 2.3.a). Under more restrictive conditions, sequences {θn}n≥0 and {f(θn)}n≥0 converge to S and a

point in f(S) (respectively), i.e.,

lim
n→∞

d(θn,S) = 0, lim
n→∞

∇f(θn) = 0, lim
n→∞

d(f(θn), f(S)) = 0, lim sup
n→∞

f(θn) = lim inf
n→∞

f(θn) (11)

almost surely on {supn≥0 ‖θn‖ < ∞} (see [4, Corollary 6.7] which holds under Assumptions 2.1, 2.2, 2.3.b).

The same asymptotic behavior occurs when Assumptions 2.1, 2.3.a hold and {ξn}n≥0 is a martingale-difference

sequence (see [9, Proposition 1]). When the gradient estimator is biased (the case where η > 0), (10), (11)

are not true any more. Now, the quantities

lim sup
n→∞

d(θn,R), lim sup
n→∞

‖∇f(θn)‖, lim sup
n→∞

d(f(θn), f(R)), lim sup
n→∞

f(θn)− lim inf
n→∞

f(θn) (12)

are strictly positive and depend on η (it is reasonable to expect these quantities to decrease in η and to tend

to zero as η → 0). Hence, the quantities (12) and their dependence on η can be considered as a sensible
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characterization of the asymptotic bias of the gradient search with biased gradient estimation. In the case

of algorithm (1), such a characterization is provided by Theorem 2.1. The theorem includes relatively tight,

explicit bounds on the quantities (12) in the terms of the gradient estimator’s bias η and analytical properties

of f(·).
The results of Theorem 2.1 are of a local nature. They hold only on the event where algorithm (1) is stable

(i.e., where sequence {θn}n≥0 belongs to a compact set Q). Stating results on the asymptotic bias of stochastic

gradient search in such a local form is quite sensible due to the following reasons. The stability of stochastic

gradient search is based on well-understood arguments which are rather different from the arguments used

here to analyze the asymptotic bias. Moreover (and more importantly), as demonstrated in Appendix 1, it

is relatively easy to get a global version of Theorem 2.1 by combining the theorem with stability results for

stochastic approximation (e.g., with the results of [11]). It is also worth mentioning that local asymptotic

results are quite common in the areas of stochastic optimization and stochastic approximation (e.g., most of

the results of [7, Part II], similarly as Theorem 2.1, hold only on set ΛQ).

Stochastic gradient search with biased gradient estimation has found many applications in areas such as

statistical inference, system identification and machine learning (see e.g., [8], [13], [17], [27], [28], [29] and

reference cited therein). However, to the best of the authors’ knowledge, the asymptotic properties of biased

stochastic gradient search and biased stochastic approximation have only been studied in [12, Section 5.3], [14],

[15], [16, Section 2.7]. The results obtained in these papers provide a good insight into the asymptotic behavior

of the biased gradient search but are based on restrictive conditions. They only hold if f(·) is unimodal or if

{θn}n≥0 belongs to the domain of an asymptotically stable attractor of dθ/dt = −∇f(θ). Additionally, they

do not provide any explicit bound on the asymptotic bias of the stochastic gradient search unless f(·) is of a

simple form (e.g., convex or polynomial). Unfortunately, in the case of complex stochastic gradient algorithms

(such as those studied in Section 4 and [33]), f(·) is usually multimodal with lot of unisolated local extrema

and saddle points. For such algorithms, not only it is hard to verify the assumptions adopted in [12, Section

5.3], [14], [15], [16, Section 2.7], but these assumptions are likely not to hold at all.

Relying on the chain-recurrence, Yomdin theorem and Lojasiewicz inequalities, Theorem 2.1 overcomes the

described difficulties. The theorem allows the objective function f(·) to be multimodal (with manifolds of

unisolated extrema and saddle points) and does not require dθ/dt = −∇f(θ) to have an asymptotically stable

attractor which is infinitely often visited by {θn}n≥0. In addition to this, Theorem 2.1 provides relatively

tight, explicit bounds on the asymptotic bias of algorithm (1).

3. Stochastic Gradient Search with Markovian Dynamics

In order to illustrate the results of Section 2 and to set up a framework for the analysis carried out in Section 4

and [33], we apply Theorem 2.1 to stochastic gradient algorithms with Markovian dynamics. These algorithms

are defined by the following difference equation:

θn+1 = θn − αn(F (θn, Zn+1) + ηn), n ≥ 0. (13)

In this recursion, F : Rdθ ×Rdz → Rdθ is a Borel-measurable function, while {αn}n≥0 is a sequence of positive

real numbers. θ0 is an Rdθ -valued random variable defined on a probability space (Ω,F , P ). {Zn}n≥0 is an

Rdz -valued stochastic process defined on (Ω,F , P ), while {ηn}n≥0 is an Rdθ -valued stochastic process defined

on the same probability space. {Zn}n≥0 is a Markov process controlled by {θn}n≥0, i.e., there exists a family

of transition probability kernels {Πθ(·, ·) : θ ∈ Rdθ} defined on Rdz such that

P (Zn+1 ∈ B|θ0, Z0, . . . , θn, Zn) = Πθn(Zn, B) (14)

almost surely for any Borel-measurable set B ⊆ Rdz and n ≥ 0. {ηn}n≥0 are random functions of {θn}n≥0,

i.e., ηn is a random function of θ0, . . . , θn for each n ≥ 0. In the context of stochastic gradient search,

F (θn, Zn+1) + ηn represents an estimator of the gradient ∇f(θn).

The algorithm (13) is analyzed under the following assumptions.

Assumption 3.1.
∑∞
n=0 αn =∞,

∑∞
n=0 α

2
n <∞ and

∑∞
n=0 |αn − αn+1| <∞.
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Assumption 3.2. There exist a differentiable function f : Rdθ → R and a Borel-measurable function F̃ :

Rdθ × Rdz → Rdθ such that ∇f(·) is locally Lipschitz continuous and

F (θ, z)−∇f(θ) = F̃ (θ, z)− (ΠF̃ )(θ, z) (15)

for each θ ∈ Rdθ , z ∈ Rdz , where (ΠF̃ )(θ, z) =
∫
F̃ (θ, z′)Πθ(z, dz

′).

Assumption 3.3. For any compact set Q ⊂ Rdθ , there exists a Borel-measurable function ϕQ : Rdz → [1,∞)

such that

max{‖F (θ, z)‖, ‖F̃ (θ, z)‖, ‖(ΠF̃ )(θ, z)‖} ≤ ϕQ(z),

‖(ΠF̃ )(θ′, z)− (ΠF̃ )(θ′′, z)‖ ≤ ϕQ(z)‖θ′ − θ′′‖

for all θ, θ′, θ′′ ∈ Q, z ∈ Rdz . Moreover,

sup
n≥0

E
(
ϕ2
Q(Zn+1)I{τQ>n}|θ0 = θ, Z0 = z

)
<∞

for all θ ∈ Rdθ , z ∈ Rdz , where τQ is the stopping time defined by τQ = inf ({n ≥ 0 : θn 6∈ Q} ∪ {∞}).

Assumption 3.4. lim supn→∞ ‖ηn‖ <∞ almost surely on {supn≥0 ‖θn‖ <∞}.

Let R, S and f(S) have the same meaning as in Section 2 for the objective function f(·) now specified

in Assumption 3.2. Moreover, let η and ΛQ have the same meaning as in (5), (6). Then, our results on the

asymptotic behavior of the recursion (13) read as follows.

Theorem 3.1. Suppose that Assumptions 3.1 – 3.4 hold. Let f(·) be the function specified in Assumption

3.2, and let Q ⊂ Rdθ be any compact set. Then, the following is true:

(i) If f(·) satisfies Assumption 2.3.a, Part (i) of Theorem 2.1 holds.

(ii) If f(·) satisfies Assumption 2.3.b, Part (ii) of Theorem 2.1 holds.

(iii) If f(·) satisfies Assumption 2.3.c, Part (iii) of Theorem 2.1 holds.

Theorem 3.1 is proved in Section 7, while its global version is provided in Appendix 2.

Assumption 3.1 is related to the sequence {αn}n≥0. It is satisfied if αn = 1/na for n ≥ 1, where a ∈ (1/2, 1]

is a constant. Assumptions 3.2 and 3.3 correspond to the stochastic process {Zn}n≥0 and are standard for the

asymptotic analysis of stochastic approximation algorithms with Markovian dynamics. Basically, Assumptions

3.2 and 3.3 require the Poisson equation associated with algorithm (13) to have a solution which is Lipschitz

continuous in θ. They hold if the following is satisfied: (i) Πθ(·, ·) is geometrically ergodic for each θ ∈ Rdθ ,
(ii) the convergence rate of Πn

θ (·, ·) is locally uniform in θ, and (iii) Πθ(·, ·) is locally Lipschitz continuous in θ

on Rdθ (for further details see, [7, Chapter II.2], [26, Chapter 17] and references cited therein). Assumptions

3.2 and 3.3 have been introduced by Métivier and Priouret in [25] (see also [7, Part II]), and later generalized

by Kushner and his co-workers (see [22] and references cited therein). However, none of these results cover the

scenario where biased gradient estimates are used. Theorem 3.1 fills this gap in the literature on stochastic

optimization and stochastic approximation.

4. Application to Reinforcement Learning

In this section, Theorems 2.1 and 3.1 are applied to the asymptotic analysis of a popular policy-gradient

search algorithm for average-cost Markov decision problems introduced in [2]. Policy-gradient search is one

of the most important classes of reinforcement learning (for further details, see e.g., [8], [29]).

In order to define controlled Markov chains with parametrized randomized control and to formulate the

corresponding average-cost decision problems, we use the following notation. dθ ≥ 1, Nx > 1, Ny > 1

are integers, while X = {1, . . . , Nx} and Y = {1, . . . , Ny}. φ(x, y) is a non-negative (real-valued) function of

(x, y) ∈ X ×Y. p(x′|x, y) and qθ(y|x) are non-negative (real-valued) functions of (θ, x, x′, y) ∈ Rdθ×X ×X ×Y
with the following properties: qθ(y|x) is differentiable in θ for each θ ∈ Rdθ , x ∈ X , y ∈ Y, and∑

x′∈X
p(x′|x, y) = 1,

∑
y′∈Y

qθ(y
′|x) = 1
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for the same θ, x, y. For θ ∈ Rdθ , {(Xθ
n, Y

θ
n )}n≥0 is an X × Y-valued Markov chain which is defined on a

(canonical) probability space (Ω,F , Pθ) and satisfies

Pθ(X
θ
n+1 = x′, Y θn+1 = y′|Xθ

n = x, Y θn = y) = qθ(y
′|x′)p(x′|x, y)

for each x, x′ ∈ X , y, y′ ∈ Y. f(·) is a function defined by

f(θ) = lim
n→∞

Eθ

(
1

n

n∑
i=1

φ(Xθ
i , Y

θ
i )

)
(16)

for θ ∈ Rdθ . With this notation, an average-cost Markov decision problem with parameterized randomized

control can be defined as the minimization of f(·). In the literature on reinforcement learning and operations

research, {Xθ
n}n≥0 are referred to as a controlled Markov chain, while {Y θn }n≥0 are called control actions.

p(x′|x, y) is referred to as the (chain) transition probability, while qθ(y|x) is called the (control) action prob-

ability. For further details on Markov decision processes, see [8], [29], and references cited therein.

Since f(·) and its gradient rarely admit a closed-form expression, f(·) is minimized using methods based

on stochastic gradient search and Monte Carlo gradient estimation. Such a method can be derived as follows.

Let sθ(x, y) be the score function defined by

sθ(x, y) =
∇θqθ(y|x)

qθ(y|x)

for θ ∈ Rdθ , x ∈ X , y ∈ Y. If {(Xθ
n, Y

θ
n )}n≥0 is geometrically ergodic, we have f(θ) = limn→∞Eθ

(
φ(Xθ

n, Y
θ
n )
)

and

∇f(θ) = lim
n→∞

Eθ

(
φ(Xθ

n, Y
θ
n )

n−1∑
i=0

sθ(X
θ
n−i, Y

θ
n−i)

)
(see the proof of Lemma 8.2 and in particular (42), (44)). Hence, quantity

φ(Xθ
n, Y

θ
n )

n−1∑
i=0

sθ(X
θ
n−i, Y

θ
n−i)

is an asymptotically unbiased estimator of ∇f(θ). However, it can have a very large variance for large n so

that the term sθ(X
θ
n−i, Y

θ
n−i) is ‘discounted’ by λi, where λ ∈ [0, 1) is a constant referred to as the discounting

factor. This leads to the following gradient estimator:

φ(Xθ
n, Y

θ
n )

n−1∑
i=0

λisθ(X
θ
n−i, Y

θ
n−i). (17)

This gradient estimator (17) is biased and its bias is of the order O(1 − λ) when λ → 1 (see Lemma 8.2).

Combining gradient search with the estimator (17), we get the policy-gradient algorithm proposed in [2]. This

algorithm is defined by the following difference equations:

Wn+1 = λWn + sθn(Xn+1, Yn+1),

θn+1 = θn − αnφ(Xn+1, Yn+1)Wn+1, n ≥ 0. (18)

In the recursion (18), {αn}n≥0 is a sequence of positive reals, while θ0,W0 ∈ Rdθ are any (deterministic)

vectors. {Xn}n≥1 and {Yn}n≥1 are X and Y valued stochastic processes (respectively) generated through the

following Monte Carlo simulations:

Xn+1|θn, Xn, Yn, . . . , θ0, X0, Y0 ∼ p(·|Xn, Yn),

Yn+1|Xn+1, θn, Xn, Yn, . . . , θ0, X0, Y0 ∼ qθn(·|Xn+1), n ≥ 0, (19)

where X0 ∈ X , Y0 ∈ Y are deterministic quantities. Hence, {(Xn, Yn)}n≥1 satisfies

P (Xn+1 = x, Yn+1 = y|θn, Xn, Yn, . . . , θ0, X0, Y0) = qθn(y|x)p(x|Xn, Yn)

for all x ∈ X , y ∈ Y, n ≥ 1.

Algorithm (18) is analyzed under the following assumptions.
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Assumption 4.1. For all θ ∈ Rdθ , {Xθ
n}n≥0 is irreducible and aperiodic.

Assumption 4.2. For all θ ∈ Rdθ , x ∈ X , y ∈ Y, sθ(x, y) is well-defined (and finite). Moreover, for each

x ∈ X , y ∈ Y, sθ(x, y) is locally Lipschitz continuous in θ on Rdθ .

Assumption 4.3.a. For each x ∈ X , y ∈ Y, qθ(y|x) is p-times differentiable in θ on Rdθ , where p > dθ.

Assumption 4.3.b. For each x ∈ X , y ∈ Y, qθ(y|x) is real-analytic in θ on Rdθ .

Assumption 4.1 is related to the stability of the controlled Markov chain {Xθ
n}n≥0. In this or similar

form, it is often involved in the asymptotic analysis of reinforcement learning algorithms (see e.g., [8], [29]).

Assumptions 4.2, 4.3.a and 4.3.b correspond to the parameterization of the action probabilities qθ(y|x). They

are satisfied for many commonly used parameterizations (such as natural, exponential and trigonometric).

Let R, S and f(S) have the same meaning as in Section 2 for the objective function f(·) now defined in

(16). Moreover, let ΛQ have the same meaning as in (6). Then, our results on the asymptotic behavior of the

recursion (18) read as follows.

Theorem 4.1. Suppose that Assumptions 3.1, 4.1 and 4.2 hold. Let Q ⊂ Rdθ be any compact set. Then, the

following is true:

(i) There exists a (deterministic) non-decreasing function ψQ : [0,∞) → [0,∞) (independent of λ and

depending only on φ(x, y), p(x′|x, y), qθ(y|x)) such that limt→0 ψQ(t) = ψQ(0) = 0 and

lim sup
n→∞

d(θn,R) ≤ ψQ(1− λ)

almost surely on ΛQ.

(ii) If Assumption 4.3.a is additionally satisfied, there exists a real number KQ ∈ (0,∞) (independent of λ

and depending only on φ(x, y), p(x′|x, y), qθ(y|x)) such that

lim sup
n→∞

‖∇f(θn)‖ ≤ KQ(1− λ)q/2,

lim sup
n→∞

f(θn)− lim inf
n→∞

f(θn) ≤ KQ(1− λ)q

almost surely on ΛQ, where q = (p− dθ)/(p− 1).

(iii) If Assumption 4.3.b is additionally satisfied, there exist real numbers rQ ∈ (0, 1), LQ ∈ (0,∞) (indepen-

dent of λ and depending only on φ(x, y), p(x′|x, y), qθ(y|x)) such that

lim sup
n→∞

d(θn,S) ≤ LQ(1− λ)rQ ,

lim sup
n→∞

‖∇f(θn)‖ ≤ LQ(1− λ)1/2,

lim sup
n→∞

d(f(θn), f(S)) ≤ LQ(1− λ)

almost surely on ΛQ.

Theorem 4.1 is proved in Section 8.

Remark. Function ψQ(·) depends on φ(x, y), p(x′|x, y), qθ(y|x) through function f(·) defined in (16) and its

properties. It also depends on p(x′|x, y), qθ(y|x) through the properties of {(Xθ
n, Y

θ
n )}n≥0 (see Lemma 8.1).

Additionally, it depends on φ(x, y), qθ(y|x) through upper bounds on |φ(x, y)|, ‖sθ(x, y)‖. Further details can

be found in the proofs of Lemmas 8.1, 8.2 and Theorem 4.1 (Section 8).

Remark. Like ψQ(·), constants KQ and LQ depend on φ(x, y), p(x′|x, y), qθ(y|x) through function f(·)
(defined in (16)) and its properties. KQ and LQ also depend on φ(x, y), p(x′|x, y), qθ(y|x) through the

ergodicity properties of {(Xθ
n, Y

θ
n )}n≥0. Moreover, KQ and LQ depend on φ(x, y), p(x′|x, y), qθ(y|x) through

upper bounds on |φ(x, y)|, ‖sθ(x, y)‖. For further details, see the proofs of Lemmas 8.1, 8.2 and Theorem 4.1

(Section 8).
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Although gradient search with ‘discounted’ gradient estimation (17) is widely used in reinforcement learning

(besides policy-gradient search, temporal-difference and actor-critic learning also rely on the same approach),

the available literature does not give a quite satisfactory answer to the problem of its asymptotic behavior.

To the best of the present authors’ knowledge, the existing results do not offer even the guarantee that the

asymptotic bias of recursion (18) goes to zero as λ → 1 (i.e., that {θn}n≥0 converges to a vicinity of S
whose radius tends to zero as λ → 1). The paper [20] can be considered as the strongest result on the

asymptotic behavior of reinforcement learning with ‘discounted’ gradient estimation. However, [20] only

claims that a subsequence of {θn}n≥0 converges to a vicinity of S whose radius goes to zero as λ → 1. The

main difficulty stems from the fact that reinforcement learning algorithms are so complex that the existing

asymptotic results for biased stochastic gradient search and biased stochastic approximation [12, Section 5.3],

[14], [15], [16, Section 2.7] cannot be applied. Relying on the results presented in Sections 2 and 3, Theorem

4.1 overcomes these difficulties. Under mild and easily verifiable conditions, Theorem 4.1 guarantees that the

asymptotic bias of algorithm (18) converges to zero as λ→ 1 (Part (i)). Theorem 4.1 also provides relatively

tight, polynomial bounds on the rate at which the bias goes to zero (Parts (ii), (iii)).

5. Proof of Part (i) of Theorem 2.1

In this section, we rely on the following notation. For a set A ⊆ Rdθ and ε ∈ (0,∞), let Vε(A) be the ε-vicinity

of A, i.e., Vε(A) = {θ ∈ Rdθ : d(θ,A) ≤ ε}. For θ ∈ Rdθ and γ ∈ [0,∞), let Fγ(θ) be the set defined by

Fγ(θ) =
{
−∇f(θ) + ϑ : ϑ ∈ Rdθ , ‖ϑ‖ ≤ γ

}
(notice that Fγ(θ) is the set-valued function of θ). For γ ∈ [0,∞), let Φγ be the family of solutions to the

differential inclusion dθ/dt ∈ Fγ(θ), i.e., Φγ is the collection of absolutely continuous functions ϕ : [0,∞) →
Rdθ satisfying dϕ(t)/dt ∈ Fγ(ϕ(t)) almost everywhere (in t) on [0,∞). For a compact set Q ⊂ Rdθ and

γ ∈ [0,∞), let HQ,γ be the largest invariant set of the differential inclusion dθ/dt ∈ Fγ(θ) contained in Q,

i.e., HQ,γ is the largest set H with the following property: For any θ ∈ H, there exists a solution ϕ ∈ Φγ
such that ϕ(0) = θ and ϕ(t) ∈ H for all t ∈ [0,∞). For a compact set Q ⊂ Rdθ and γ ∈ [0,∞), let RQ,γ be

the set of chain-recurrent points of the differential inclusion dθ/dt ∈ Fγ(θ) contained in Q, i.e., θ ∈ RQ,γ if

and only if for any δ, t ∈ (0,∞), there exist an integer N ≥ 1, real numbers t1, . . . , tN ∈ [t,∞) and solutions

ϕ1, . . . , ϕN ∈ Φγ (each of which can depend on θ, δ, t) such that ϕk(0) ∈ HQ,γ for 1 ≤ k ≤ N and

‖ϕ1(0)− θ‖ ≤ δ, ‖ϕN (tN )− θ‖ ≤ δ, ‖ϕk(tk)− ϕk+1(0)‖ ≤ δ

for 1 ≤ k < N . For more details on differential inclusions and their solutions, invariant sets and chain-recurrent

points, see [1] and references cited therein.

Lemma 5.1. Suppose that Assumption 2.3.a holds. Then, given a compact set Q ⊂ Rdθ , there exists a non-

decreasing function φQ : [0,∞)→ [0,∞) such that limγ→0 φQ(γ) = φQ(0) = 0 and RQ,γ ⊆ VφQ(γ)(R) for all

γ ∈ [0,∞).

Proof. Let Q ⊂ Rdθ be any compact set. Moreover, let φQ : [0,∞) → [0,∞) be the function defined by

φQ(0) = 0 and

φQ(γ) = sup ({d(θ,R) : θ ∈ RQ,γ} ∪ {0})

for γ ∈ (0,∞). Then, it is easy to show that φQ(·) is well-defined and satisfies RQ,γ ⊆ VφQ(γ)(R) for all

γ ∈ [0,∞). It is also easy to check that Fγ(θ) ⊆ Fδ(θ) for all θ ∈ Rdθ , γ, δ ∈ [0,∞) satisfying γ ≤ δ.

Consequently, Φγ ⊆ Φδ, HQ,γ ⊆ HQ,δ, RQ,γ ⊆ RQ,δ for all γ, δ ∈ [0,∞) satisfying γ ≤ δ. Thus, φQ(·)
is non-decreasing.1 Moreover, [6, Theorem 3.1] implies that given ε ∈ (0,∞), there exists a real number

γQ(ε) ∈ (0,∞) such that RQ,γ ⊆ Vε(R) for all γ ∈ [0, γQ(ε)). Therefore, φQ(γ) ≤ ε for all ε ∈ (0,∞),

γ ∈ [0, γQ(ε)).2 Consequently, limγ→0 φQ(γ) = φQ(0) = 0.

1Notice that {d(θ,R) : θ ∈ RQ,γ} ⊆ {d(θ,R) : θ ∈ RQ,δ} whenever γ ≤ δ.
2Notice that d(θ,R) ≤ ε whenever θ ∈ RQ,γ , γ ∈ [0, γQ(ε)).

9



Proof of Part (i) of Theorem 2.1. Let Q ⊂ Rdθ be any compact set and let ψQ : [0,∞)→ [0,∞) be the

function defined by ψQ(t) = φQ(2t) for t ∈ [0,∞) (φQ(·) is specified in the statement of Lemma 5.1). Then,

due to Lemma 5.1, ψQ(·) is non-decreasing and limt→0 ψQ(t) = ψQ(0) = 0. Moreover, owing to Assumption

2.2, there exists an event NQ ∈ F such that the following holds: P (NQ) = 0 and (4) is satisfied on ΛQ \NQ
for all t ∈ (0,∞). Let ω be an arbitrary sample in ΛQ \NQ. To prove Part (i) of Theorem 2.1, it is sufficient

to show (7) for ω. Notice that all formulas that follow in the proof correspond to ω.

If η = 0, then [4, Proposition 4.1, Theorem 5.7] imply that all limit points of {θn}n≥0 are included in R.

Hence, (7) holds when η = 0.

Now, suppose η > 0. Then, there exists n0 ≥ 0 (depending on ω) such that θn ∈ Q, ‖ηn‖ ≤ 2η for n ≥ n0.

Therefore,

θn+1 − θn
αn

+ ζn = − (∇f(θn) + ηn) ∈ F2η(θn)

for n ≥ n0. Consequently, [5, Proposition 1.3, Theorem 3.6] imply that all limit points of {θn}n≥0 are

contained in RQ,2η. Combining this with Lemma 5.1, we conclude that the limit points of {θn}n≥0 are

included in VφQ(2η)(R) = VψQ(η)(R). Thus, (7) holds when η > 0.

6. Proof of Parts (ii), (iii) of Theorem 2.1

In this section, the following notation is used. φ is the random variable defined by

φ = lim sup
n→∞

‖∇f(θn)‖.

For t ∈ (0,∞) and n ≥ 0, φ1,n(t), φ2,n(t), φn(t) are the random quantities defined as

φ1,n(t) = −(∇f(θn))T
a(n,t)−1∑
i=n

αi (∇f(θi)−∇f(θn)) ,

φ2,n(t) =

∫ 1

0

(
∇f(θn + s(θa(n,t) − θn))−∇f(θn)

)T
(θa(n,t) − θn)ds,

φn(t) = φ1,n(t) + φ2,n(t).

Then, it is straightforward to show that

f(θa(n,t))− f(θn) =− ‖∇f(θn)‖2
a(n,t)−1∑
i=n

αi − (∇f(θn))T
a(n,t)−1∑
i=n

αiξi + φn(t)

≤− ‖∇f(θn)‖

‖∇f(θn)‖
a(n,t)−1∑
i=n

αi −

∥∥∥∥∥∥
a(n,t)−1∑
i=n

αiξi

∥∥∥∥∥∥
+ |φn(t)| (20)

for t ∈ (0,∞), n ≥ 0. Moreover, Assumption 2.1 implies

lim
n→∞

a(n,t)−1∑
i=n

αi = lim
n→∞

a(n,t)∑
i=n

αi = t (21)

for t ∈ (0,∞).3

We also need the following additional notation. The Lebesgue measure is denoted by m(·). For a compact

set Q ⊂ Rdθ and ε ∈ (0,∞), AQ,ε is the set defined by

AQ,ε = {f(θ) : θ ∈ Q, ‖∇f(θ)‖ ≤ ε}. (22)

In order to treat Assumptions 2.3.b, 2.3.c in a unified way and to provide a unified proof of Parts (ii), (iii)

of Theorem 2.1, we introduce the following assumption.

3Notice that t ≥
∑a(n,t)−1
i=n αi =

∑a(n,t)
i=n αi − αa(n,t) ≥ t− αa(n,t) for t ∈ (0,∞), n ≥ 0.
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Assumption 6.1. There exists a real number s ∈ (0, 1] and for any compact set Q ⊂ Rdθ , there exists a real

number MQ ∈ [1,∞) such that m(AQ,ε) ≤MQε
s for all ε ∈ (0,∞).

Proposition 6.1. Suppose that Assumption 2.3.b holds. Let Q ⊂ Rdθ be any compact set. Then, there exists

a real number MQ ∈ [1,∞) (depending only on f(·)) such that m(AQ,ε) ≤ MQε
q for all ε ∈ (0,∞) (q is

specified in the statement of Theorem 2.1).

Proof. The proposition is a particular case of Yomdin theorem [34, Theorem 1.2].

Proposition 6.2. Suppose that Assumption 2.3.c holds. Let Q ⊂ Rdθ be any compact set. Then, the following

is true:

(i) There exists a real number MQ ∈ [1,∞) (depending only on f(·)) such that m(AQ,ε) ≤ MQε for all

ε ∈ (0,∞).

(ii) There exist real numbers rQ ∈ (0, 1), M1,Q,M2,Q ∈ [1,∞) (depending only on f(·)) such that

d(θ,S) ≤M1,Q‖∇f(θ)‖rQ , d(f(θ)), f(S)) ≤M2,Q‖∇f(θ)‖ (23)

for all θ ∈ Q (S and f(S) are specified in (2)).

Proof. Let Q ⊂ Rdθ be any compact set. Owing to Lojasiewicz (ordinary) inequality (see [10, Theorem 6.4,

Remark 6.5]), there exist real numbers rQ ∈ (0, 1), M1,Q ∈ [1,∞) such that the first inequality in (23) holds

for all θ ∈ Q. Moreover, due to Lojasiewicz gradient inequality (see [21, Theorem  LI, Page 775]), we have

the following: For any a ∈ f(Q) = {f(θ) : θ ∈ Q}, there exist real numbers δQ,a ∈ (0, 1), νQ,a ∈ (1, 2],

NQ,a ∈ [1,∞) such that

|f(θ)− a| ≤ NQ,a‖∇f(θ)‖νQ,a (24)

for all θ ∈ Q satisfying |f(θ)− a| ≤ δQ,a.

Now, we show by contradiction that f(S ∩ Q) = {f(θ) : θ ∈ S ∩ Q} has finitely many elements. Suppose

the opposite. Then, there exists a sequence {ϑn}n≥0 in S ∩ Q such that {f(ϑn)}n≥0 contains infinitely

many different elements. Since S ∩Q is compact, {ϑn}n≥0 has a convergent subsequence {ϑ̃n}n≥0 such that

{f(ϑ̃n)}n≥0 also contains infinitely many different elements. Let ϑ = limn→∞ ϑ̃n, a = f(ϑ). As δQ,a > 0,

there exists an integer n0 ≥ 0 such that |f(ϑ̃n) − a| ≤ δQ,a for n ≥ n0. Since ∇f(ϑ̃n) = 0 for n ≥ 0, (24)

implies f(ϑ̃n) = a for n ≥ n0. However, this is impossible, since {f(ϑ̃n)}n≥0 has infinitely many different

elements.

Let nQ be the number of elements in f(S ∩Q), while {ai : 1 ≤ i ≤ nQ} are the elements of f(S ∩Q). For

1 ≤ i ≤ nQ, let

BQ,i = {θ ∈ Q : ‖∇f(θ)‖ < 1, f(θ) ∈ (ai − δQ,ai , ai + δQ,ai)} ,

while BQ =
⋃nQ
i=1BQ,i, εQ = inf{‖∇f(θ)‖ : θ ∈ Q \BQ}. As BQ is open and S ∩Q ⊂ BQ, we have εQ > 0.

Let C̃1,Q ∈ [1,∞) be an upper bound of |f(·)| on Q. Moreover, let C̃2,Q = max1≤i≤nQ NQ,ai , M2,Q =

2 max{ε−1
Q C̃1,Q, C̃2,Q}. Then, if θ ∈ BQ, we have

d(f(θ), f(S)) = min
1≤i≤nQ

|f(θ)− ai| ≤ max
1≤i≤nQ

NQ,ai‖∇f(θ)‖νQ,ai ≤ C̃2,Q‖∇f(θ)‖ ≤M2,Q‖∇f(θ)‖

(notice that ‖∇f(θ)‖ < 1, νQ,ai > 1). If θ ∈ Q \BQ, we get

d(f(θ), f(S)) = min
1≤i≤nQ

|f(θ)− ai| ≤ 2C̃1,Q ≤ 2ε−1
Q C̃1,Q‖∇f(θ)‖ ≤M2,Q‖∇f(θ)‖

(notice that ‖∇f(θ)‖ ≥ εQ). Hence, the second inequality in (23) holds for all θ ∈ Q.

Let MQ = 2M2,QnQ. Owing to the second inequality in (23), we have

AQ,ε ⊆
nQ⋃
i=1

[f(ai)−M2,Qε, f(ai) +M2,Qε]

for each ε ∈ (0,∞). Consequently, m(AQ,ε) ≤ 2M2,QnQε = MQε for all ε ∈ (0,∞).
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Lemma 6.1. Let Assumptions 2.1 and 2.2 hold. Then, there exists an event N0 ∈ F such that P (N0) = 0

and

lim sup
n→∞

max
n≤k<a(n,t)

∥∥∥∥∥
k∑
i=n

αiξi

∥∥∥∥∥ ≤ ηt, (25)

lim
n→∞

|f(θn+1)− f(θn)| = 0 (26)

on {supn≥0 ‖θn‖ < ∞} \ N0 for all t ∈ (0,∞). Moreover, given a compact set Q ⊂ Rdθ , there exists a real

number C1,Q ∈ [1,∞) (independent of η and depending only on f(·)) such that

lim sup
n→∞

max
n≤k≤a(n,t)

|f(θk)− f(θn)| ≤ C1,Qt(φ+ η), (27)

lim sup
n→∞

|φn(t)| ≤ C1,Qt
2(φ+ η)2 (28)

on ΛQ \N0 for all t ∈ (0,∞).

Proof. Owing to Assumption 2.2, there exists N0 ∈ F such that the following holds: P (N0) = 0 and (4) is

satisfied on {supn≥0 ‖θn‖ <∞} \N0 for all t ∈ (0,∞). Moreover, we have∥∥∥∥∥
k∑
i=n

αiξi

∥∥∥∥∥ ≤
∥∥∥∥∥
k∑
i=n

αiζi

∥∥∥∥∥+

k∑
i=n

αi‖ηi‖ ≤ max
n≤j<a(n,t)

∥∥∥∥∥
j∑
i=n

αiζi

∥∥∥∥∥+ tmax
j≥n
‖ηj‖

for 0 ≤ n ≤ k < a(n, t), t ∈ (0,∞). Consequently,

lim sup
n→∞

max
n≤k<a(n,t)

∥∥∥∥∥
k∑
i=n

αiξi

∥∥∥∥∥ ≤ lim sup
n→∞

max
n≤k<a(n,t)

∥∥∥∥∥
k∑
i=n

αiζi

∥∥∥∥∥+ t lim
n→∞

max
k≥n
‖ηk‖ = ηt

on {supn≥0 ‖θn‖ <∞} \N0 for t ∈ (0,∞).

Let Q ⊂ Rdθ be any compact set, while C̃Q ∈ [1,∞) stands for a Lipschitz constant of f(·), ∇f(·) on Q.

Moreover, let C1,Q = 2C̃Q, while ω is an arbitrary sample from ΛQ \N0. In order to prove the lemma, it is

sufficient to show that (26) – (28) hold for ω and any t ∈ (0,∞). Notice that all formulas which follow in the

proof correspond to ω.

Let ε ∈ (0,∞) be any real number. Then, there exists n0 ≥ 0 (depending on ω, ε) such that θn ∈ Q,

‖∇f(θn)‖ ≤ φ+ ε for n ≥ n0 (notice that these relations hold for all but finitely many n). Therefore,

‖θk − θn‖ ≤
k−1∑
i=n

αi‖∇f(θi)‖+

∥∥∥∥∥
k−1∑
i=n

αiξi

∥∥∥∥∥ ≤ t(φ+ ε) + max
n≤j<a(n,t)

∥∥∥∥∥
j∑
i=n

αiξi

∥∥∥∥∥
for n0 ≤ n ≤ k ≤ a(n, t), t ∈ (0,∞). Combining this with (25), we get

lim sup
n→∞

max
n≤k≤a(n,t)

‖θk − θn‖ ≤ t(φ+ η + ε)

for t ∈ (0,∞). Then, the limit process ε→ 0 yields

lim sup
n→∞

max
n≤k≤a(n,t)

‖θk − θn‖ ≤ t(φ+ η)

for t ∈ (0,∞) (notice that ε ∈ (0,∞) is any real number). As

|f(θk)− f(θn)| ≤ C̃Q‖θk − θn‖

for k ≥ n ≥ n0 (notice that θn ∈ Q for n ≥ n0), we have

lim sup
n→∞

max
n≤k≤a(n,t)

|f(θk)− f(θn)| ≤ C̃Qt(φ+ η) ≤ C1,Qt(φ+ η)
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for t ∈ (0,∞). Since

|f(θn+1)− f(θn)| ≤ max
n≤k≤a(n,t)

|f(θk)− f(θn)|

for t ∈ (0,∞) and sufficiently large n (notice that a(n, t) ≥ n+ 1 for sufficiently large n), we conclude

lim sup
n→∞

|f(θn+1)− f(θn)| ≤ C̃Qt(φ+ η)

for t ∈ (0,∞). Then, the limit process t→ 0 implies (26). Moreover, we have

|φ1,n(t)| ≤ C̃Q‖∇f(θn)‖
a(n,t)−1∑
i=n

αi‖θi − θn‖ ≤ C̃Qt‖∇f(θn)‖ max
n≤k≤a(n,t)

‖θk − θn‖,

|φ2,n(t)| ≤ C̃Q‖θa(n,t) − θn‖2 ≤ C̃Q max
n≤k≤a(n,t)

‖θk − θn‖2

for n ≥ n0, t ∈ (0,∞). Therefore,

lim sup
n→∞

|φ1,n(t)| ≤ C̃Qt2φ(φ+ η), lim sup
n→∞

|φ2,n(t)| ≤ C̃Qt2(φ+ η)2

for t ∈ (0,∞). Hence,

lim sup
n→∞

|φn(t)| ≤ 2C̃Qt
2(φ+ η)2 = C1,Qt

2(φ+ η)2

for t ∈ (0,∞).

Lemma 6.2. Let Assumptions 2.1, 2.2 and 6.1 hold. Then, given a compact set Q ⊂ Rdθ , there exists a real

number C2,Q ∈ [1,∞) (independent of η and depending only on f(·)) such that

lim sup
n→∞

f(θn)− lim inf
n→∞

f(θn) ≤ C2,Qη
s (29)

on ΛQ \N0 (s is specified in Assumption 6.1).

Proof. Let Q ⊂ Rdθ be any compact set, while C̃Q stands for an upper bound of ‖∇f(·)‖ on Q. Moreover,

let C2,Q = 4MQ. In order to avoid considering separately the cases η = 0 and η > 0, we show

lim sup
n→∞

f(θn)− lim inf
n→∞

f(θn) ≤ C2,Q(ε+ η)s (30)

on ΛQ \N0 for all ε ∈ (0,∞). Then, (29) follows directly from (30) by letting ε→ 0.

Inequality (30) is proved by contradiction: Suppose that there exist a sample ω ∈ ΛQ \ N0 and a real

number ε ∈ (0,∞) such that (30) does not hold for them. Notice that all formulas which follow in the proof

correspond to ω.

Let γ = 2(ε+ η), δ = MQγ
s, while

µ = δ/(C1,Q(C̃Q + η)), ν = γ2/(4C1,Q(C̃Q + η)2), τ = min{µ, ν/2}.

Since {θn}n≥0 is bounded and (30) is not satisfied, there exist real numbers a, b ∈ R (depending on ω, ε) such

that b − a > 2δ and such that inequalities f(θn) < a, f(θk) > b hold for infinitely many n, k ≥ 0 (notice

that C2,Q(ε + η)s ≥ 2δ). As m(AQ,γ) ≤ MQγ
s = δ, there exists a real number c such that c 6∈ AQ,γ and

a < c < b− δ (otherwise, (a, b− δ) ⊂ AQ,ε, which is impossible as (b− δ)− a > δ).

Let n0 = 0, while

lk = min{n ≥ nk−1 : f(θn) ≤ c}, nk = min{n ≥ lk : f(θn) ≥ b}, mk = max{n ≤ nk : f(θn) ≤ c}

for k ≥ 1. It can easily be deduced that sequences {lk}k≥1, {mk}k≥1, {nk}k≥1 are well-defined and satisfy

lk < mk < nk < lk+1 and

f(θmk) ≤ c < f(θmk+1), f(θnk)− f(θmk) ≥ b− c, min
mk<n≤nk

f(θn) > c (31)
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for k ≥ 1. Moreover, Lemma 6.1 implies

lim
k→∞

|f(θmk+1)− f(θmk)| = 0, (32)

lim sup
k→∞

max
mk≤j≤a(mk,τ)

|f(θj)− f(θmk)| ≤ C1,Qτ(C̃Q + η) ≤ δ < b− c (33)

(to get (33), notice that θn ∈ Q for all but finitely many n and that φ ≤ C̃Q). Owing to (33) and the second

inequality in (31), there exists k0 ≥ 1 such that a(mk, τ) ≤ nk for k ≥ k0.4 Then, the last inequality in

(31) implies f(θa(mk,τ)) ≥ c for k ≥ k0, while limk→∞ f(θmk) = c follows from (32) and the first inequality

in (31). Since ‖∇f(θ)‖ > γ for any θ ∈ Q satisfying f(θ) = c (due to the way c is selected), we have

lim infk→∞ ‖∇f(θmk)‖ ≥ γ. Consequently, Lemma 6.1 and (21) yield

lim inf
k→∞

‖∇f(θmk)‖
a(mk,τ)−1∑
i=mk

αi −

∥∥∥∥∥∥
a(mk,τ)−1∑
i=mk

αiξi

∥∥∥∥∥∥
 ≥ τ(γ − η) ≥ τγ/2 > 0

(notice that η < γ/2). Therefore,

lim inf
k→∞

‖∇f(θmk)‖

‖∇f(θmk)‖
a(mk,τ)−1∑
i=mk

αi −

∥∥∥∥∥∥
a(mk,τ)−1∑
i=mk

αiξi

∥∥∥∥∥∥
 ≥ τγ2/2.

Combining this with Lemma 6.1 and (20), we get

lim sup
k→∞

(f(θa(mk,τ))− f(θmk)) ≤− lim inf
k→∞

‖∇f(θmk)‖

‖∇f(θmk)‖
a(mk,τ)−1∑
i=mk

αi −

∥∥∥∥∥∥
a(mk,τ)−1∑
i=mk

αiξi

∥∥∥∥∥∥


+ lim sup
k→∞

|φmk(τ)|

≤ − τγ2/2 + C1,Qτ
2(φ+ η)2 < 0

(notice that φ ≤ C̃Q, C1,Qτ(C̃Q + η) ≤ γ2/4). However, this is not possible, as f(θa(mk,τ)) ≥ c ≥ f(θmk) for

each k ≥ k0. Hence, (30) is true.

Lemma 6.3. Let Assumptions 2.1 and 2.2 hold. Then, given a compact set Q ⊂ Rdθ , there exists a real

number C3,Q ∈ (0, 1) (independent of η and depending only on f(·)) such that

lim sup
n→∞

f(θn)− lim inf
n→∞

f(θn) ≥ C3,Qφ
2 (34)

on (ΛQ \N0) ∩ {φ > 2η}.

Proof. Let Q ⊂ Rdθ be any compact set, while C3,Q = 1/(64C1,Q) and τ = 1/(16C1,Q). Moreover, let ω be

an arbitrary sample from (ΛQ \ N0) ∩ {φ > 2η}. In order to prove the lemma’s assertion, it is sufficient to

show that (34) holds for ω. Notice that all formulas which follow in the proof correspond to ω.

Let n0 = 0 and

nk = min{n > nk−1 : ‖∇f(θn)‖ ≥ φ− 1/k}

for k ≥ 1. Obviously, sequence {nk}k≥0 is well-defined and satisfies limk→∞ ‖∇f(θnk)‖ = φ. Then, Lemma

6.1 and (21) yield

lim inf
k→∞

‖∇f(θnk)‖

‖∇f(θnk)‖
a(nk,τ)−1∑
i=nk

αi −

∥∥∥∥∥∥
a(nk,τ)−1∑
i=nk

αiξi

∥∥∥∥∥∥
 ≥ τφ(φ− η) ≥ τφ2/2 > 0.

4If a(mk, τ) > nk for infinitely many k, then (33) yields

lim inf
k→∞

(f(θnk )− f(θmk )) ≤ δ < b− c.

However, this contradicts the second inequality in (31).
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Combining this with Lemma 6.1 and (20), we get

lim sup
k→∞

(f(θa(nk,τ))− f(θnk)) ≤− lim inf
k→∞

‖∇f(θnk)‖

‖∇f(θnk)‖
a(nk,τ)−1∑
i=nk

αi −

∥∥∥∥∥∥
a(nk,τ)−1∑
i=nk

αiξi

∥∥∥∥∥∥


+ lim sup
k→∞

|φnk(τ)|

≤ − τφ2/2 + C1,Qτ
2(φ+ η)2 ≤ −C3,Qφ

2

(notice that η < φ). Consequently,

lim sup
n→∞

f(θn)− lim inf
n→∞

f(θn) ≥ − lim sup
k→∞

(f(θa(nk,τ))− f(θnk)) ≥ C3,Qφ
2.

Hence, (34) is true.

Proposition 6.3. Suppose that Assumptions 2.1, 2.2 and 6.1 hold. Let Q ⊂ Rdθ be any compact set. Then,

there exists a real number KQ ∈ [1,∞) (independent of η and depending only on f(·)) such that

lim sup
n→∞

‖∇f(θn)‖ ≤ KQη
s/2, lim sup

n→∞
f(θn)− lim inf

n→∞
f(θn) ≤ KQη

s (35)

on ΛQ \N0.

Proof. Let Q ⊂ Rdθ be any compact set, while C̃Q ∈ [1,∞) stands for an upper bound of ‖∇f(·)‖ on Q.

Moreover, let KQ = max{2, C̃Q, C2,Q}. Obviously, it is sufficient to show φ ≤ KQη
s/2 on ΛQ \N0 (notice that

the second inequality in (35) is a direct consequence of Lemma 6.2).

Owing to Lemmas 6.2, 6.3, we have C3,Qφ
2 ≤ C2,Qη

s on (ΛQ \ N0) ∩ {φ > 2η}. Therefore, φ ≤
(C2,Q/C3,Q)1/2ηs/2 ≤ KQη

s/2 on (ΛQ \ N0) ∩ {φ > 2η}. Moreover, φ ≤ 2η ≤ KQη
s/2 on (ΛQ \ N0) ∩ {φ ≤

2η, η ≤ 1} (notice that s/2 < 1), while φ ≤ C̃Q ≤ KQη
s/2 on (ΛQ \N0)∩ {φ ≤ 2η, η > 1}. Thus, φ ≤ KQη

s/2

indeed holds on ΛQ \N0.

Proof of Parts (ii), (iii) of Theorem 2.1. Part (ii) of the theorem directly follows from Propositions 6.1,

6.3, while Part (iii) is a direct consequence of Propositions 6.2, 6.3.

7. Proof of Theorem 3.1

The following notation is used in this section. For θ ∈ Rdθ , z ∈ Rdz , Eθ,z(·) denotes the conditional expectation

given θ0 = θ, Z0 = z. For n ≥ 1, ζn, ξn are the random variables defined by

ζn = F (θn, Zn+1)−∇f(θn), ξn = ζn + ηn, (36)

while ζ1,n, ζ2,n, ζ3,n are random variables defined as

ζ1,n = F̃ (θn, Zn+1)− (ΠF̃ )(θn, Zn), ζ2,n = (ΠF̃ )(θn, Zn)− (ΠF̃ )(θn−1, Zn), ζ3,n = −(ΠF̃ )(θn, Zn+1).

Then, it is straightforward to verify that algorithm (13) admits the form (1). Moreover, using Assumption

3.2, it is easy to show

k∑
i=n

αiζi =

k∑
i=n

αiζ1,i +

k∑
i=n

αiζ2,i +

k∑
i=n

(αi − αi+1)ζ3,i + αk+1ζ3,k − αnζ3,n−1 (37)

for 1 ≤ n ≤ k.

Proof of Theorem 3.1. Let Q ⊂ Rdθ be any compact set and Λ̃Q be the event defined by Λ̃Q =
⋂∞
n=0{θn ∈

Q}. Then, owing to Assumptions 3.1 and 3.3, we have

Eθ,z

( ∞∑
n=0

(α2
n + α2

n+1)ϕ2
Q(Zn+1)I{τQ>n}

)
<∞, Eθ,z

( ∞∑
n=0

|αn − αn+1|ϕ2
Q(Zn+1)I{τQ>n}

)
<∞ (38)
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for all θ ∈ Rdθ , z ∈ Rdz .
Let Fn = σ{θ0, Z0, . . . , θn, Zn} for n ≥ 0. Since {τQ > n} ∈ Fn for n ≥ 0, Assumption 3.2 implies

Eθ,z
(
ζ1,nI{τQ>n}|Fn

)
=
(
Eθ,z(F̃ (θn, Zn+1)|Fn)− (ΠF̃ )(θn, Zn)

)
I{τQ>n} = 0

almost surely for each θ ∈ Rdθ , z ∈ Rdz , n ≥ 0. Assumption 3.3 also yields

‖ζ1,n‖I{τQ>n} ≤ ϕQ(Zn)I{τQ>n−1} + ϕQ(Zn+1)I{τQ>n}

for n ≥ 0. Combining this with (38), we get

Eθ,z

( ∞∑
n=0

α2
n‖ζ1,n‖2I{τQ>n}

)
≤ 2Eθ,z

( ∞∑
n=0

(α2
n + α2

n+1)ϕ2
Q(Zn+1)I{τQ>n}

)
<∞

for all θ ∈ Rdθ , z ∈ Rdz . Then, using Doob theorem, we conclude that
∑∞
n=0 αnζ1,nI{τQ>n} converges almost

surely. As Λ̃Q ⊆ {τQ > n} for n ≥ 0,
∑∞
n=0 αnζ1,n converges almost surely on Λ̃Q.5

Due to Assumption 3.3, we have

‖ζ2,n‖IΛ̃Q ≤ϕQ(Zn)‖θn − θn−1‖IΛ̃Q
≤αn−1ϕQ(Zn)(‖F (θn−1, Zn)‖+ ‖ηn−1‖)IΛ̃Q
≤αn−1ϕQ(Zn)(ϕQ(Zn) + ‖ηn‖)IΛ̃Q
≤2αn−1(ϕ2

Q(Zn) + ‖ηn−1‖2)IΛ̃Q

for n ≥ 1 (notice that ϕQ(z) ≥ 1 for any z ∈ Rdz ). Thus,

j∑
n=1

αn‖ζ2,n‖IΛ̃Q ≤2

∞∑
n=0

αnαn+1

(
ϕ2
Q(Zn+1) + ‖ηn+1‖2

)
IΛ̃Q

≤
∞∑
n=0

(α2
n + α2

n+1)ϕ2
Q(Zn+1)I{τQ>n} + sup

n≥0
‖ηn‖2IΛ̃Q

∞∑
n=0

(α2
n + α2

n+1)

(notice that 2αnαn+1 ≤ α2
n + α2

n+1). Then, Assumption 3.4 and (38) imply that
∑∞
n=1 αnζ2,n converges

almost surely on Λ̃Q.

Owing to Assumption 3.3, we have

‖ζ3,n‖IΛ̃Q ≤ ϕQ(Zn+1)IΛ̃Q ≤ ϕ
2
Q(Zn+1)I{τQ>n}

for n ≥ 0. Hence,

∞∑
n=0

α2
n+1‖ζ3,n‖2IΛ̃Q ≤

∞∑
n=0

α2
n+1ϕ

2
Q(Zn+1)I{τQ>n},

∞∑
n=0

|αn − αn+1| ‖ζ3,n‖IΛ̃Q ≤
∞∑
n=0

|αn − αn+1|ϕ2
Q(Zn+1)I{τQ>n}.

Combining this with (38), we conclude limn→∞ αn+1ζ3,n = 0 almost surely on Λ̃Q. We also deduce that∑∞
n=0(αn − αn+1)ζ3,n converges almost surely on Λ̃Q. Since

∑∞
n=0 αnζ1,n,

∑∞
n=1 αnζ2,n converge almost

surely on Λ̃Q, (37) implies that
∑∞
n=0 αnζn also converges almost surely on Λ̃Q. As Q is any compact set in

Rdθ ,
∑∞
n=0 αnζn converges almost surely on {supn≥0 ‖θn‖ < ∞}. Consequently, Assumption 3.4 yields that

{ξn}n≥0 defined in (36) satisfies Assumption 2.2. Then, the theorem’s assertion directly follows from Theorem

2.1.

5Notice that
∑∞
n=0 αnζ1,nI{τQ>n} =

∑∞
n=0 αnζ1,n on Λ̃Q.
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8. Proof of Theorem 4.1

In this section, we use the following notation. φ(v), sθ(v) are the functions defined by

φ(v) = φ(x, y), sθ(v) = sθ(x, y)

for θ ∈ Rdθ , v = (x, y) ∈ X × Y. For θ ∈ Rdθ , {V θn }n≥0, {W θ
n}n≥0 and {Zθn}n≥0 are stochastic processes

defined by

V θn = (Xθ
n, Y

θ
n ), W θ

n+1 = λW θ
n + sθ(V

θ
n ), Zθn = (V θn ,W

θ
n)

for n ≥ 0, where W θ
0 ∈ Rdθ is a (deterministic) vector (notice that {V θn }n≥0, {Zθn}n≥0 are Markov chains).

Moreover, for θ ∈ Rdθ , rθ(·|·) and νθ(·) are the transition kernel and invariant probability of {V θn }n≥0,6 while

Πθ(·, ·) is the transition kernel of {Zθn}n≥0.7 For θ ∈ Rdθ , n ≥ 0, rnθ (·|·) is the n-th transition probability of

{V θn }n≥0, while

r̃nθ (v′|v) = rnθ (v′|v)− νθ(v′)

for θ ∈ Rdθ , v, v′ ∈ X × Y, n ≥ 0. Additionally, the functions η(·), F (·, ·) are defined by

η(θ) =

∞∑
n=0

∑
v,v′∈X×Y

λnφ(v′)r̃nθ (v′|v)sθ(v)νθ(v)−∇f(θ), F (θ, z) = φ(v)w − η(θ)

for θ ∈ Rdθ , z = (v, w) ∈ (X × Y)× Rdθ .8 {Zn}n≥0, {ηn}n≥ are the stochastic processes defined as

Zn = (Xn, Yn,Wn), ηn = η(θn)

for n ≥ 0. Then, it is straightforward to show that the algorithm (18) is of the same form as the recursion

studied in Section 3 (i.e., {θn}n≥0, {ηn}n≥0, F (·, ·), Πθ(·, ·) defined in Section 4 and here admit (13), (14)).

We will use the following additional notation. Nv is the integer defined by Nv = NxNy, while e ∈ RNv is the

vector whose all components are one. For v ∈ X × Y, e(v) ∈ RNv is the vector representation of Iv(·), while

φ ∈ RNv is the vector representation of φ(·).9 For θ ∈ Rdθ , Rθ ∈ RNv×Nv and νθ ∈ RNv are the transition

matrix and the invariant probability vector of {V θn }n≥0,10 while R̃θ = Rθ − eνTθ . For θ ∈ Rdθ , 1 ≤ j ≤ dθ,

sθ,j(·) is the j-th component of sθ(·), while Sθ,j ∈ RNv×Nv is the diagonal matrix representation of sθ,j(·).11

Lemma 8.1. Suppose that Assumptions 4.1 and 4.2 hold. Let Q ⊂ Rdθ be any compact set. Then, the

following is true:

(i) {V θn }n≥0 is geometrically ergodic for each θ ∈ Rdθ . Moreover, there exist real numbers εQ ∈ (0, 1),

C1,Q ∈ [1,∞) (independent of λ) such ‖R̃nθ ‖ ≤ C1,Qε
n
Q for all θ ∈ Q, n ≥ 0.

(ii) There exists a real number C2,Q ∈ [1,∞) (independent of λ) such that

max{‖νθ′ − νθ′′‖, ‖Rnθ′ −Rnθ′′‖} ≤ C2,Q‖θ′ − θ′′‖, (39)

‖R̃nθ′ − R̃nθ′′‖ ≤ C2,Qε
n
Q‖θ′ − θ′′‖ (40)

for all θ′, θ′′ ∈ Q, n ≥ 0.

(iii) νθ is differentiable on Rdθ . Moreover, ∇θνθ is locally Lipschitz continuous on Rdθ .

(iv) If Assumption 4.3.a is satisfied, νθ is p times differentiable on Rdθ .

6Under Assumption 4.1, νθ(·) exists and is unique (the details are provided in Lemma 8.1). The transition rθ(·|·) can be

defined by rθ(v′|v) = qθ(y′|x′)p(x′|x, y) for v = (x, y) ∈ X × Y, v′ = (x′, y′) ∈ X × Y.
7Πθ(·, ·) can be defined by Πθ(z, {v′}×B) = IB(λw+ sθ(v′))rθ(v′|v) for z = (v, w) ∈ (X ×Y)×Rdθ and a Borel-measurable

set B ⊆ Rdθ .
8Under Assumptions 4.1, 4.2, f(·) is differentiable (the details are provided in Lemma 8.2).
9For v = (x, y) ∈ X × Y, element i of e(v) is one if i = (x − 1)Ny + y and zero otherwise. For the same v, φ(v) is element

(x− 1)Ny + y of φ.
10For v = (x, y) ∈ X ×Y, v′ = (x′, y′) ∈ X ×Y, rθ(v′|v) is entry ((x− 1)Ny + y, (x′ − 1)Ny + y′) of Rθ, while νθ(v) is element

(x− 1)Ny + y of νθ.
11For v = (x, y) ∈ X × Y, sθ,j(v) is entry ((x− 1)Ny + y, (x− 1)Ny + y) of Sθ,j . The off-diagonal elements of Sθ,j are zero.
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(v) If Assumption 4.3.b is satisfied, νθ is real-analytic on Rdθ .

Proof. (i) For θ ∈ Rdθ , n ≥ 0, let pnθ (·|·) and µθ(·) be the n-th transition probability and the invariant

probability of {Xθ
n}n≥0. Moreover, for θ ∈ Rdθ , v = (x, y) ∈ X × Y, let ν̃θ(v) = qθ(y|x)µθ(x). Then, it is

straightforward to verify

rn+1
θ (v′|v)− ν̃θ(v′) =

∑
x′′∈X

qθ(y
′|x′)(pnθ (x′|x′′)− µθ(x′))p(x′′|x, y)

for θ ∈ Rdθ , v = (x, y) ∈ X × Y, v′ = (x′, y′) ∈ X × Y, n ≥ 0. Therefore,

|rn+1
θ (v′|v)− ν̃θ(v′)| ≤

∑
x′′∈X

qθ(y
′|x′)|pnθ (x′|x′′)− µθ(x′)|p(x′′|x, y) ≤ Nx max

x′′∈X
|pnθ (x′|x′′)− µθ(x′)|

for all θ ∈ Rdθ , v = (x, y) ∈ X × Y, v′ = (x′, y′) ∈ X × Y, n ≥ 0. Combining this with Assumption 4.1, we

conclude that {V θn }n≥0 is geometrically ergodic for each θ ∈ Rdθ . We also conclude that ν̃θ(·) is the invariant

probability of {V θn }n≥0 for each θ ∈ Rdθ , i.e., νθ(v) = ν̃θ(v) = qθ(y|x)µθ(x) for θ ∈ Rdθ , v = (x, y) ∈ X × Y.

For θ ∈ Rdθ , let ρθ = minv∈V νθ(x)/3. Then, we have 0 < ρθ ≤ 1/(3Nv), ρθ ≤ νθ(v)/3 for all θ ∈ Rdθ ,
v ∈ V. Moreover, for any θ ∈ Rdθ , there exists an integer nθ ≥ 0 such that |rnθ (v′|v) − νθ(v′)| ≤ ρθ for each

v, v′ ∈ V, n ≥ nθ. Hence, rnθ (v′|v) ≥ νθ(v
′) − ρθ ≥ 2ρθ for all θ ∈ Rdθ , v, v′ ∈ V, n ≥ nθ. Additionally,

Assumption 4.2 implies that for each v, v′ ∈ V, n ≥ 0, rnθ (v′|v) is locally Lipschitz continuous in θ on Rdθ .12

Consequently, for any θ ∈ Rdθ , there exists a real number δθ ∈ (0, 1) such that |rnθϑ (v′|v)− rnθθ (v′|v)| ≤ ρθ for

all ϑ ∈ Rdθ , v, v′ ∈ V satisfying ‖ϑ−θ‖ ≤ δθ. Thus, rnθϑ (v′|v) ≥ rnθθ (v′|v)−ρθ ≥ ρθ for each ϑ ∈ Rdθ , v, v′ ∈ V
satisfying ‖ϑ− θ‖ ≤ δθ. Since

rnϑ(v′|v) =
∑
v′′∈V

rnθϑ (v′|v′′)rn−nθϑ (v′′|v) ≥ ρθ
∑
v′′∈V

rn−nθϑ (v′′|v) = ρθ

for any ϑ ∈ Rdθ , v, v′ ∈ V, n ≥ nθ satisfying ‖ϑ− θ‖ ≤ δθ, we conclude rnϑ(v′|v) ≥ ρθ for the same ϑ, v, v′, n.

Let Bθ = {ϑ ∈ Rdθ : ‖ϑ− θ‖ < δθ} for θ ∈ Rdθ . As {Bθ}θ∈Q is an open covering of Q, there exists a finite

set Q̃ ⊆ Q such that
⋃
θ∈Q̃Bθ ⊃ Q. Let ñQ = maxθ∈Q̃ nθ, ρ̃Q = minθ∈Q̃ ρθ, ε̃Q = (1 − ρ̃Q)1/ñQ . Since each

element of Q is also an element of one of {Bθ}θ∈Q̃, we have rnθ (v′|v) ≥ ρ̃Q for all θ ∈ Q, v, v′ ∈ V, n ≥ ñQ.13

Then, standard results of Markov chain theory (see e.g., [26, Theorem 16.0.2]) imply

|rnθ (v′|v)− νθ(v′)| ≤ (1− ρ̃QNv)n/ñQ ≤ ε̃nQ

for all θ ∈ Q, v, v′ ∈ V, n ≥ 0.

Let εQ = ε̃
1/2
Q , C1,Q = Nv. Then, we have

‖R̃nθ ‖ ≤ Nv max
v,v′∈X×Y

|r̃nθ (v′|v)| ≤ Nv ε̃nQ = C1,Qε
2n
Q (41)

for all θ ∈ Q, n ≥ 0.

(ii) Let g be the Nv-th standard unit vector in RNv (i.e., the first Nv − 1 elements of g are zero, while the

last element of g is one) and, for A ∈ RNv×Nv , let G(A) be the Nv ×Nv matrix obtained when the last row

of I −AT is replaced by eT (here, I is the Nv ×Nv unit matrix). Additionally, let QNv×Nv0 = {A ∈ RNv×Nv :

det(G(A)) 6= 0} and, for A ∈ QNv×Nv0 , let h(A) = (G(A))−1g. Then, it is easy to conclude that QNv×Nv0 is an

open set (notice that det(G(A)) is a polynomial function of the entries of A). It is also easy to deduce that

h(·) is well-defined and real-analytic on QNv×Nv0 (notice that due to the Cramer’s rule, all elements of h(A)

are rational functions of the entries of A).

Let PNv×Nv0 be the set of Nv ×Nv geometrically ergodic stochastic matrices. Then, each P ∈ PNv×Nv0 has

a unique invariant probability vector. Moreover, the invariant probability vector of P ∈ PNv×Nv0 is the unique

solution to the linear system of equations G(P )x = g, where x ∈ RNv is the unknown. Hence, det(G(P )) 6= 0

for each P ∈ PNv×Nv0 so PNv×Nv0 ⊂ QNv×Nv0 .

12Notice that, due to Assumption 4.2, qθ(y|x) is locally Lipschitz continuous in θ for each x ∈ X , y ∈ Y and that rnθ (·|·) is a

polynomial function of p(·|·, ·), qθ(·|·).
13If θ ∈ Bϑ and ϑ ∈ Q̃, then nϑ ≤ ñQ and rnθ (v′|v) ≥ ρϑ ≥ ρ̃Q for n ≥ nϑ.
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Owing to (i), Rθ ∈ PNv×Nv0 for each θ ∈ Rdθ . Thus, νθ = h(Rθ) for all θ ∈ Rdθ . Moreover, due to

Assumption 4.2, Rθ is locally Lipschitz continuous on Rdθ .14 Since h(·) is real-analytic on QNv×Nv0 and

PNv×Nv0 ⊂ QNv×Nv0 , νθ is locally Lipschitz continuous on Rdθ .
Let C̃1,Q ∈ [1,∞) be a Lipschitz constant of Rθ, νθ on Q, while C̃2,Q ∈ [1,∞) is an upper bound of the

sequence {nεnQ}n≥1. Let C2,Q = 3ε−1
Q C2

1,QC̃1,QC̃2,Q. It is straightforward to verify

R̃n+1
θ′ − R̃n+1

θ′′ =

n∑
i=0

R̃iθ′(Rθ′ −Rθ′′ − e(νθ′ − νθ′′)T )R̃n−iθ′′

for θ′, θ′′ ∈ Rdθ , n ≥ 0. Combining this with (41), we get

‖R̃n+1
θ′ − R̃n+1

θ′′ ‖ ≤
n∑
i=0

‖R̃iθ′‖‖R̃n−iθ′′ ‖ (‖Rθ′ −Rθ′′‖+ ‖νθ′ − νθ′′‖)

≤2C2
1,QC̃1,Q(n+ 1)ε2n

Q ‖θ′ − θ′′‖
≤C2,Qε

n
Q‖θ′ − θ′′‖

for each θ′, θ′′ ∈ Q, n ≥ 0. Therefore,

‖Rnθ′ −Rnθ′′‖ ≤ ‖R̃nθ′ − R̃nθ′′‖+ ‖νθ′ − νθ′′‖ ≤ C̃1,Q(2C2
1,QC̃2,Qnε

n−1
Q + 1)‖θ′ − θ′′‖ ≤ C2,Q‖θ′ − θ′′‖

for all θ′, θ′′ ∈ Q, n ≥ 0 (notice that R̃kθ = Rkθ − eνTθ ).

(iii) Due to (i), Rθ ∈ PNv×Nv0 for each θ ∈ Rdθ . Hence, νθ = h(Rθ) for all θ ∈ Rdθ . Moreover, owing to

Assumption 4.2, Rθ is differentiable on Rdθ and its first-order derivatives are locally Lipschitz continuous on

the same space.15 As h(·) is real-analytic on QNv×Nv0 and PNv×Nv0 ⊂ QNv×Nv0 , νθ is differentiable on Rdθ .
The same arguments also imply that ∇θνθ is locally Lipschitz continuous on Rdθ .

(iv), (v) If Assumption 4.3.a is satisfied, then Rθ is p times differentiable on Rdθ , and consequently, νθ is p

times differentiable on Rdθ , too.16 Similarly, if Assumption 4.3.b is satisfied, then Rθ is real-analytic on Rdθ ,
and therefore, νθ is also real-analytic on Rdθ .

Lemma 8.2. Suppose that Assumptions 4.1 and 4.2 hold. Let Q ⊂ Rdθ be any compact set. Then, the

following is true:

(i) f(·) is differentiable and ∇f(·) is locally Lipschitz continuous.

(ii) There exists a real number C3,Q ∈ [1,∞) (independent of λ) such that ‖η(θ)‖ ≤ C3,Q(1 − λ) for all

θ ∈ Q.

(iii) If Assumption 4.3.a is satisfied, f(·) is p times differentiable.

(iv) If Assumption 4.3.b is satisfied, f(·) is real-analytic.

Proof. (i), (iii), (iv) Owing to Lemma 8.1, we have

f(θ) = lim
n→∞

Eθ(φ(V θn )) =
∑

v∈X×Y
φ(v)νθ(v) = φT νθ (42)

for all θ ∈ Rdθ . Then, these parts of the lemma directly follow from Lemma 8.1.

(ii) For each 1 ≤ j ≤ dθ, let C̃Q ∈ [1,∞) be an upper bound of ‖Sθ,j‖ on Q. For θ ∈ Rdθ , v ∈ X ×Y, n ≥ 0,

let also define

fn(θ, v) =
∑

v′∈X×Y
φ(v′)rnθ (v′|v), h(θ) =

∞∑
n=0

∑
v,v′∈X×Y

φ(v′)r̃nθ (v′|v)sθ(v)νθ(v). (43)

Owing to Lemma 8.1, fn(θ, v) converges to f(θ) as n→∞ uniformly in (θ, v) on Q× (X ×Y). Due to the

same lemma, h(·) is well-defined on Q (notice that when θ ∈ Q, each term in the sum in (43) tends to zero at

14Notice that rθ(v′|v) = qθ(y′|x′)p(x′|x, y) for v = (x, y), v′ = (x′, y′) and that qθ(y|x) is locally Lipschitz continuous in θ.
15Notice that ∇θrθ(v′|v) = sθ(x′, y′)qθ(y′|x′)p(x′|x, y) for v = (x, y), v′ = (x′, y′).
16Notice that Rθ ∈ PNv×Nv0 ⊂ QNv×Nv0 , νθ = h(Rθ) for all θ ∈ Rdθ . Notice also that h(·) is real-analytic on QNv×Nv0 .
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the rate εnQ). Moreover, it is straightforward to show

∇θfn(θ, v0) =∇θ

 ∑
v1,...,vn∈X×Y

φ(vn)

(
n∏
i=1

rθ(vi|vi−1)

)
=

∑
v1,...,vn∈X×Y

φ(vn)

(
n∑
i=1

∇θrθ(vi|vi−1)

rθ(vi|vi−1)

)(
n∏
i=1

rθ(vi|vi−1)

)

=

n∑
i=1

∑
v′,v′′∈X×Y

φ(v′′)rn−iθ (v′′|v′)sθ(v′)riθ(v′|v0) (44)

for all θ ∈ Rdθ , v0 ∈ X × Y, n ≥ 1. Therefore,

∂jθfn(θ, v) =

n∑
i=1

eT (v)RiθSθ,jR
n−i
θ φ =

n−1∑
i=0

eT (v)Rn−iθ Sθ,jR
i
θφ (45)

for θ ∈ Rdθ , v ∈ X × Y, 1 ≤ j ≤ dθ, n ≥ 1, where ∂jθfn(θ, v) is the j-th component of ∇θfn(θ, v). We also

have

n−1∑
i=0

eT (v)Rn−iθ Sθ,jR
i
θe = 0 (46)

for θ ∈ Rdθ , v ∈ X × Y, 1 ≤ j ≤ dθ, n ≥ 1.17 Hence,

n−1∑
i=0

eT (v)Rn−iθ Sθ,jeν
T
θ φ = νTθ φ

n−1∑
i=0

eT (v)Rn−iθ Sθ,jR
i
θe = 0

for θ ∈ Rdθ , v ∈ X × Y, 1 ≤ j ≤ dθ, n ≥ 1 (notice that Riθe = e). Therefore,

∂jθfn(θ, v) =

n−1∑
i=0

eT (v)Rn−iθ Sθ,jR̃
i
θφ

for θ ∈ Rdθ , v ∈ X × Y, 1 ≤ j ≤ dθ, n ≥ 1. Additionally, we have

hj(θ) =

∞∑
n=0

νTθ Sθ,jR̃
n
θφ =

n−1∑
i=0

eT (v)eνTθ Sθ,jR̃
i
θφ+

∞∑
i=n

νTθ Sθ,jR̃
i
θφ

for θ ∈ Rdθ , v ∈ X × Y, 1 ≤ j ≤ dθ, n ≥ 1 (notice that eT (v)e = 1), where hj(θ) is the j-th component of

h(θ). Thus,

∂jθfn(θ, v)− hj(θ) =

n−1∑
i=0

eT (v)R̃n−iθ Sθ,jR̃
i
θφ−

∞∑
i=n

νTθ Sθ,jR̃
i
θφ

for θ ∈ Rdθ , v ∈ X × Y, 1 ≤ j ≤ dθ, n ≥ 1. Then, Lemma 8.1 implies

|∂jθfn(θ, v)− hj(θ)| ≤‖φ‖‖e(v)‖‖Sθ,j‖
n−1∑
i=0

‖R̃iθ‖‖R̃n−iθ ‖+ ‖φ‖‖νθ‖‖Sθ,j‖
∞∑
i=n

‖R̃iθ‖

≤C̃QC2
1,Q‖φ‖nεnQ +

C̃QC1,Q‖φ‖εnQ
1− εQ

for all θ ∈ Q, v ∈ X ×Y, 1 ≤ j ≤ dθ, n ≥ 1. Hence, ∇θfn(θ, v) converges to h(θ) as n→∞ uniformly in (θ, v)

on Q× (X × Y). Therefore, ∇f(θ) = h(θ) for all θ ∈ Rdθ (notice that Q is any compact set). Consequently,

ηj(θ) =

∞∑
n=0

λnνTθ Sθ,jR̃
n
θφ− hj(θ) = −

∞∑
n=0

(1− λn)νTθ Sθ,jR̃
n
θφ

17If φ = e, then fn(θ, v) is identically one, while ∇θfn(θ, v) is identically zero. Hence, (45) reduces to (46) when φ = e.
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for θ ∈ Rdθ , 1 ≤ j ≤ dθ, where ηj(θ) is the j-th component of η(θ). Combining this with Lemma 8.1, we get

|ηj(θ)| ≤‖φ‖‖νθ‖‖Sθ,j‖
∞∑
n=0

(1− λn)‖R̃nθ ‖ ≤ C̃QC1,Q‖φ‖
∞∑
n=0

(1− λn)εnQ ≤
C̃QC1,Q‖φ‖(1− λ)

(1− εQ)2

for all θ ∈ Q, 1 ≤ j ≤ dθ. Then, we conclude that there exists a real number C3,Q ∈ [1,∞) with the properties

specified in (ii).

Lemma 8.3. Suppose that Assumptions 4.1 and 4.2 hold. Let Q ⊂ Rdθ be any compact set. Then, the

following is true:

(i) There exist real numbers δQ ∈ (0, 1), C4,Q ∈ [1,∞) (possibly depending on λ) such that

‖(ΠnF )(θ, z)−∇f(θ)‖ ≤ C4,Qnδ
n
Q(1 + ‖w‖),

‖((ΠnF )(θ′, z)−∇f(θ′))− ((ΠnF )(θ′′, z)−∇f(θ′′))‖ ≤ C4,Qnδ
n
Q‖θ′ − θ′′‖(1 + ‖w‖),

for all θ, θ′, θ′′ ∈ Q, z = (x, y, w) ∈ X × Y × Rdθ , n ≥ 0.

(ii) There exits a real number C5,Q ∈ [1,∞) (possibly depending on λ) such that

‖Wn+1‖I{τQ>n} ≤ C5,Q(1 + ‖W0‖)

for all n ≥ 0 (τQ is specified in Assumption 3.3).

Proof. (i) For each 1 ≤ j ≤ dθ, let C̃1,Q ∈ [1,∞) be an upper bound of ‖Sθ,j‖ on Q and a Lipschitz

constant of Sθ,j on the same set. Moreover, let C̃2,Q = 3C̃1,QC1,QC2,QNv, C̃3,Q = 2C̃2,Q(1 − εQ)−1, while

δQ = max{λ, εQ}.
Owing to Lemma 8.1, we have

‖R̃kθSθ,jRlθ‖ ≤ ‖R̃kθ‖‖Sθ,j‖‖Rlθ‖ ≤ C̃2,Qε
k
Q, (47)

‖νTθ Sθ,jRlθ‖ ≤ ‖νTθ ‖‖Sθ,j‖‖Rlθ‖ ≤ C̃2,Q (48)

for all θ ∈ Q, 1 ≤ j ≤ dθ, k, l ≥ 1. Due to the same lemma, we also have

‖R̃kθ′Sθ′,jRlθ′ − R̃kθ′′Sθ′′,jRlθ′′‖ ≤‖R̃kθ′ − R̃kθ′′‖‖Sθ′,j‖‖Rlθ′‖+ ‖R̃kθ′′‖‖Sθ′,j − Sθ′′,j‖‖Rlθ′‖
+ ‖R̃kθ′′‖‖Sθ′′,j‖‖Rlθ′ −Rlθ′′‖
≤C̃2,Qε

k
Q‖θ′ − θ′′‖ (49)

for all θ′, θ′′ ∈ Q, 1 ≤ j ≤ dθ, k, l ≥ 1. In addition to this, Lemma 8.1 implies

‖νTθ′Sθ′,jRlθ′ − νTθ′′Sθ′′,jRlθ′′‖ ≤‖νTθ′ − νTθ′′‖‖Sθ′,j‖‖Rlθ′‖+ ‖νTθ′′‖‖Sθ′,j − Sθ′′,j‖‖Rlθ′‖
+ ‖νTθ′′‖‖Sθ′′,j‖‖Rlθ′ −Rlθ′′‖

≤C̃2,Q‖θ′ − θ′′‖ (50)

for each θ′, θ′′ ∈ Q, 1 ≤ j ≤ dθ, l ≥ 1. Moreover, it is straightforward to show

(ΠnF )(θ, z) =− η(θ) + Eθ
(
φ(V θn )W θ

n |V θ0 = v,W θ
0 = w

)
=− η(θ) + Eθ

(
φ(V θn )

(
λnw +

n−1∑
i=0

λisθ(V
θ
n−i)

)∣∣∣∣∣V θ0 = v

)

=− η(θ) +

n−1∑
i=0

∑
v′,v′′∈X×Y

λiφ(v′′)riθ(v
′′|v′)sθ(v′)rn−iθ (v′|v) + λnw

∑
v′∈X×Y

φ(v′)rnθ (v′|v)

for θ ∈ Rdθ , z = (v, w) ∈ (X × Y)× Rdθ , n ≥ 1. Therefore,

(ΠFj)(θ, z) = −ηj(θ) +

n−1∑
i=0

λieT (v)Rn−iθ Sθ,jR
i
θφ+ λneTj w e

T (v)Rnθφ
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for θ ∈ Rdθ , z = (v, w) ∈ (X × Y)× Rdθ , 1 ≤ j ≤ dθ, n ≥ 1. Here, Fj(θ, z), ηj(θ) are the j-th components of

F (θ, z), η(θ), while ej is the j-th standard unit vector in Rdθ . Moreover, we have

∂jf(θ) = −ηj(θ) +

∞∑
n=0

λnνTθ Sθ,jR̃
n
θφ

for θ ∈ Rdθ , 1 ≤ j ≤ dθ, where ∂jf(θ) is the j-th component of ∇f(θ). Since eT (v)e = 1, R̃nθ = Rnθ − eνTθ and

νTθ Sθ,je =
∑

v∈X×Y
νθ(v)sθ,j(v) =

∑
x∈X

∑
y∈Y

∂jθqθ(y|x)

µθ(x) = 0

for θ ∈ Rdθ , v ∈ X × Y, 1 ≤ j ≤ dθ, n ≥ 0,18 we get

∂jf(θ) =− ηj(θ) +

n−1∑
i=0

λiνTθ Sθ,jR
i
θφ+

n−1∑
i=0

λiνTθ Sθ,jeν
T
θ φ+

n∑
i=n

λiνTθ Sθ,jR̃
i
θφ

=− ηj(θ) +

n−1∑
i=0

λieT (v)eνTθ Sθ,jR
i
θφ+

n∑
i=n

λiνTθ Sθ,jR̃
i
θφ

for the same θ, v, j, n. Consequently,

(ΠnFj)(θ, z)− ∂jf(θ) =

n−1∑
i=0

λieT (v)R̃n−iSθ,jR
i
θφ−

∞∑
i=n

λiνTθ Sθ,jR̃
i
θφ+ λneTj w e

T (v)Rnθφ

for θ ∈ Rdθ , z = (v, w) ∈ (X × Y)× Rdθ , 1 ≤ j ≤ dθ, n ≥ 1. Then, (47), (48) imply

|(ΠnFj)(θ, z)− ∂jf(θ)| ≤‖φ‖‖e(v)‖
n−1∑
i=0

λi‖R̃n−iθ Sθ,jR
i
θ‖+ ‖φ‖

∞∑
i=n

λi‖νTθ Sθ,jR̃iθ‖+ λn‖φ‖‖e(v)‖‖Rnθ ‖‖w‖

≤C̃2,Q

(
n∑
i=1

λiεn−iQ +

∞∑
i=n

λiεiQ + λn‖w‖

)
≤C3,Qnδ

n
Q(1 + ‖w‖) (51)

for all θ ∈ Q, z = (v, w) ∈ (X × Y)× Rdθ , 1 ≤ j ≤ dθ, n ≥ 1. Similarly, (49), (50) yield

|((ΠnFj)(θ
′, z)− ∂jf(θ′))− ((ΠnFj)(θ

′′, z)− ∂jf(θ′′))|

≤‖φ‖‖e(v)‖
n−1∑
i=0

λi‖R̃n−iθ′ Sθ′,jR
i
θ′ − R̃n−iθ′′ Sθ′′,jR

i
θ′′‖+ ‖φ‖

∞∑
i=n

λi‖νTθ′Sθ′,jR̃iθ′ − νTθ′′Sθ′′,jR̃iθ′′‖

+ λn‖φ‖‖e(v)‖‖w‖‖Rnθ′ −Rnθ′′‖

≤ C̃2,Q‖θ′ − θ′′‖

(
n∑
i=1

λiεn−iQ +

∞∑
i=n

λiεiQ + λn‖w‖

)
≤ C3,Qnδ

n
Q‖θ′ − θ′′‖(1 + ‖w‖) (52)

for all θ′, θ′′ ∈ Q, z = (v, w) ∈ (X × Y) × Rdθ , 1 ≤ j ≤ dθ, n ≥ 1. Using (51), (52), we conclude that there

exist real numbers δQ, C4,Q with properties specified in (i).

(ii) Let C5,Q = C̃1,Q(1− λ)−1 (C̃1,Q is specified in the proof of (i)). Then, due to Assumption 4.2, we have

‖Wn+1‖I{τQ>n} =

∥∥∥∥∥λn+1W0 +

n∑
i=0

λn−isθi(Xi+1, Yi+1)

∥∥∥∥∥ I{τQ>n}
≤λn+1‖W0‖+ C̃1,Q

n∑
i=0

λn−i

≤C5,Q(1 + ‖W0‖)

18Notice that
∑
y∈Y ∂

j
θqθ(y|x) = ∂jθ

(∑
y∈Y qθ(y|x)

)
= 0. Notice also that νθ(v) = qθ(y|x)µθ(x) for v = (x, y) ∈ X ×Y, where

µθ(x) is the invariant probability of {Xθ
n}n≥0 (see the proof of Part (i) of Lemma 8.1).
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for n ≥ 0.

Proof of Theorem 4.1. For θ ∈ Rdθ , z = (v, w) ∈ (X × Y)× Rdθ , let

F̃ (θ, z) =

∞∑
n=0

((ΠnF )(θ, z)−∇f(θ)), ϕ(z) = 1 + ‖w‖.

Then, using Lemma 8.3, we conclude that for each θ ∈ Rdθ , z ∈ X × Y × Rdθ , F̃ (θ, z) is well-defined and

satisfies (ΠF̃ )(θ, z) =
∑∞
n=1((ΠnF )(θ, z)−∇f(θ)). Thus, Assumption 3.2 holds. Relying on Lemma 8.3, we

also deduce that for any compact set Q ⊂ Rdθ , there exists a real number C̃Q ∈ [1,∞) (possibly depending

on λ) such that

max{‖F (θ, z)‖, ‖F̃ (θ, z)‖, ‖(ΠF̃ )(θ, z)‖} ≤ C̃Qϕ(z),

‖(ΠF̃ )(θ′, z)− (ΠF̃ )(θ′′, z)‖ ≤ C̃Qϕ(z)‖θ′ − θ′′‖,
E
(
ϕ2(Zn+1)I{τQ>n}|θ0 = θ, Z0 = z

)
≤ C̃Qϕ2(z)

for all θ, θ′, θ′′ ∈ Q, z ∈ X × Y × Rdθ . Hence, Assumptions 3.3 is satisfied, too. Moreover, Lemma 8.2 yields

η = lim sup
n→∞

‖ηn‖ ≤ C3,Q(1− λ)

on ΛQ (notice that C3,Q does not depend on λ). Then, the theorem’s assertion directly follows from Theorem

3.1 and Parts (i), (iii), (iv) of Lemma 8.2.

Appendix 1

In this section, a global version of Theorem 2.1 is presented. This result is based on the following assumptions.

Assumption A1.1. f(·) is uniformly lower bounded (i.e., infθ∈Rdθ f(θ) > −∞), and ∇f(·) is (globally)

Lipschitz continuous. Moreover, there exist real numbers c ∈ (0, 1), ρ ∈ [1,∞) such that ‖∇f(θ)‖ ≥ c for all

θ ∈ Rdθ satisfying ‖θ‖ ≥ ρ.

Assumption A1.2. {ξn}n≥0 admits the decomposition ξn = ζn + ηn for each n ≥ 0, where {ζn}n≥ and

{ηn}n≥0 are Rdθ -valued stochastic processes satisfying

lim
n→∞

g(θn) max
n≤j<a(n,t)

∥∥∥∥∥
j∑
i=n

αiζi

∥∥∥∥∥ = 0, lim sup
n→∞

g(θn)‖ηn‖ <∞ (53)

almost surely for any t ∈ (0,∞). In addition, there exists a real number δ ∈ (0, 1) such that

lim
n→∞

h(θn)‖ηn‖ < δ (54)

almost surely. Here, g, h : Rdθ → (0,∞) are the (scaling) functions defined by

g(θ) = (‖∇f(θ)‖+ 1)−1, h(θ) =

{
‖∇f(θ)‖−1, if ‖θ‖ ≥ ρ
0, otherwise

for θ ∈ Rdθ (ρ is specified in Assumption A1.1).

Assumption A1.1 is a stability condition. In this or a similar form, it is involved in practically any stability

analysis of stochastic gradient search and stochastic approximation (see e.g., [7], [12], [16] and references cited

therein). This assumption is restrictive, as it requires ∇2f(·) to be uniformly bounded. Assumption A1.1 also

requires ∇f(·) to grow at most linearly as θ →∞. Using random projections, these restrictive conditions can

considerably be relaxed (see [16], [33]).
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Assumption A1.2 is a noise condition and can be considered as a global version of Assumption 2.2. As-

sumption A1.2 requires the gradient of the objective function f(·) (asymptotically) to cancel the effect of the

gradient estimator’s error {ξn}n≥0. Assumption A1.2 is true whenever (4) holds almost surely. It is also sat-

isfied for stochastic gradient search with Markovian dynamics (see Theorem A2.1, Appendix 2). Assumption

A1.2 and the results based on it (Theorem A1.1, below) are motivated by the scaled ODE approach to the

stability analysis of stochastic approximation [11].19

Our results on the stability and asymptotic bias of algorithm (1) are provided in the next theorem.

Theorem A1.1. Suppose that Assumptions 2.1, A1.1 and A1.2 hold. Then, the following is true:

(i) There exists a compact (deterministic) set Q ⊂ Rdθ such that P (ΛQ) = 1 (ΛQ is specified in (6)).

(ii) There exists a (deterministic) non-decreasing function ψ : [0,∞) → [0,∞) (independent of η and de-

pending only on f(·)) such that limt→0 ψ(t) = ψ(0) = 0 and

lim sup
n→∞

d(θn,R) ≤ ψ(η)

almost surely.

(iii) If f(·) satisfies Assumption 2.3.b, there exists a real number K ∈ (0,∞) (independent of η and depending

only on f(·)) such that

lim sup
n→∞

‖∇f(θn)‖ ≤ Kηq/2, lim sup
n→∞

f(θn)− lim inf
n→∞

f(θn) ≤ Kηq

almost surely (q is specified in the statement of Theorem 2.1).

(iv) If f(·) satisfies Assumption 2.3.c, there exist real numbers r ∈ (0, 1), L ∈ (0,∞) (independent of η and

depending only on f(·)) such that

lim sup
n→∞

‖∇f(θn)‖ ≤ Lη1/2, lim sup
n→∞

d(f(θn), f(S)) ≤ Lη, lim sup
n→∞

d(θn,S) ≤ Lηr

almost surely.

Proof. Owing to Assumption A1.1, there exists a real number C̃1 ∈ [1,∞) such that the following is true:

(i) f(θ) > −C̃1 for all θ ∈ Rdθ , and (ii) f(θ) ≤ C̃1 for any θ ∈ Rdθ satisfying ‖θ‖ ≤ ρ + 1. Moreover, due to

Assumption A1.2, there also exists an event N0 ∈ F with the following properties: (i) P (N0) = 0, and (ii)

(53), (54) hold on N c
0 for all t ∈ (0,∞).

Let ε = (1− δ)/6, T = 2C̃1ε
−1c−2 and let φ : [0,∞)→ [0,∞) be the function defined by

φ(z) = sup{‖∇f(θ)‖ : θ ∈ Rdθ , ‖θ‖ ≤ z}

for z ∈ [0,∞). As ∇f(·) is locally Lipschitz continuous, φ(·) is locally Lipschitz continuous, too. φ(·) is also

non-negative and satisfies ‖∇f(θ)‖ ≤ φ(‖θ‖) for all θ ∈ Rdθ .
For z ∈ [0,∞), let λ(· ; z) be the solution to the ODE dz/dt = 2φ(z) satisfying λ(0; z) = z. As 2φ(·) is

non-negative and locally Lipschitz continuous, λ(· ; ·) is well-defined and locally Lipschitz continuous (in both

arguments) on [0,∞)× [0,∞). We also have

λ(t; z) = z + 2

∫ t

0

φ(λ(s; z))ds (55)

for all t, z ∈ [0,∞). Then, there exists ρ1 ∈ [1,∞) such that ρ1 ≥ ρ + 1 and such that |λ(t; z)| ≤ ρ1 for all

t ∈ [0, T ], z ∈ [0, ρ+ 1].

Let ρ2 = ρ1 + 1, Q = {θ ∈ Rdθ : ‖θ‖ ≤ ρ2}, while Λ is the event defined by

Λ = lim sup
n→∞

{‖θn‖ < ρ} =

∞⋂
m=0

∞⋃
n=m

{‖θn‖ < ρ}.

19The main difference between [11] and the results presented here is the choice of the scaling functions. The scaling adopted

in [11] is (asymptotically) proportional to ‖θ‖. In this paper, the scaling is (asymptotically) proportional to ‖∇f(θ)‖.
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Let also C̃2 ∈ [1,∞) stand for a (global) Lipschitz constant of ∇f(·) and for an upper bound of ‖∇f(·)‖ on

Q. Finally, let C̃3 = 2C̃2 exp(2C̃2), C̃4 = 12C̃1C̃2C̃3, while τ = 4−1C̃−1
4 εc2.

In order to prove the theorem’s assertion, it is sufficient to show N c
0 ⊆ Λ (i.e., to establish that on N c

0 ,

‖θn‖ ≤ ρ2 for all, but finitely many n).20 To prove this, we use contradiction. We assume that ‖θn‖ > ρ2 for

infinitely many n and some ω ∈ N c
0 . Notice that all formulas which follow in the proof correspond to ω.

Owing to (53), (54), there exists an integer k1 ≥ 0 (depending on ω) such that

g(θn) max
n≤j<a(n,T )

∥∥∥∥∥
j∑
i=n

αiζi

∥∥∥∥∥ ≤ τ2, h(θn)‖ηn‖ ≤ δ (56)

for n ≥ k1. Due to Assumption 2.1 and (53), we also have

lim
n→∞

g(θn)‖αnζn‖ = lim
n→∞

g(θn)‖αnηn‖ = 0. (57)

Since

g(θn)‖θn+1 − θn‖ ≤ αn + g(θn)‖αnζn‖+ g(θn)‖αnηn‖

for n ≥ 0, Assumption 2.1 and (57) imply limn→∞ g(θn)‖θn+1− θn‖ = 0. Then, (21) implies that there exists

an integer k2 ≥ 0 (depending on ω) such that

a(n,τ)−1∑
i=n

αi ≥ (1− ε)τ, g(θn)‖θn+1 − θn‖ ≤ τ (58)

for n ≥ k2.

Let k0 = max{k1, k2}. Moreover, let l0,m0, n0 be the integers defined as follows. If ω ∈ Λ (i.e., if ‖θn‖ < ρ

for infinitely many n), let

l0 = min{n > k0 : ‖θn−1‖ < ρ}, m0 = min{n > l0 : ‖θn‖ > ρ2}, n0 = max{n ≤ m0 : ‖θn−1‖ < ρ}. (59)

Otherwise, if ω ∈ Λc (i.e., if ‖θn‖ < ρ for finitely many n), let

l0 = max{n > 0 : ‖θn−1‖ < ρ}, m0 =∞, n0 = max{k0, l0}.

Then, we have k0 < n0 ≤ m0 and ‖θn‖ ≥ ρ for n0 ≤ n < m0.

Let φn(τ), φ1,n(τ), φ2,n(τ) have the same meaning as in Section 6. Now, the asymptotic properties of φn(τ)

are analyzed. As ‖θn‖ ≥ ρ for n0 ≤ n < m0, (56) implies∥∥∥∥∥
j∑
i=n

αiξi

∥∥∥∥∥ ≤
∥∥∥∥∥

j∑
i=n

αiζi

∥∥∥∥∥+

j∑
i=n

αi‖ηi‖ ≤ τ2g−1(θn) + δ

j∑
i=n

αi‖∇f(θi)‖ (60)

for n0 ≤ n ≤ j < min{m0, a(n, T )} (notice that ‖ηi‖ ≤ δ‖∇f(θi)‖ when ‖θi‖ ≥ ρ). Therefore,

‖∇f(θj)‖ ≤‖∇f(θn)‖+ ‖∇f(θj)−∇f(θn)‖
≤‖∇f(θn)‖+ C̃2‖θj − θn‖

≤‖∇f(θn)‖+ C̃2

j−1∑
i=n

αi‖∇f(θi)‖+ C̃2

∥∥∥∥∥
j−1∑
i=n

αiξi

∥∥∥∥∥
≤‖∇f(θn)‖+ C̃2τ

2g−1(θn) + 2C̃2

j−1∑
i=n

αi‖∇f(θi)‖

20Assumption 2.2 is a consequence of Assumption A1.2, and therefore, Parts (ii) – (iv) directly follow from Part (i) and

Theorem 2.1.
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for n0 ≤ n < j ≤ min{m0 − 1, a(n, τ)}.21 Combining this with Bellman-Gronwall inequality (see e.g. [12,

Appendix B]), we deduce

‖∇f(θj)‖ ≤
(
‖∇f(θn)‖+ C̃2τ

2g−1(θn)
)

exp

(
2C̃2

j−1∑
i=n

αi

)
≤
(
‖∇f(θn)‖+ C̃2τ

2g−1(θn)
)

(1 + C̃3τ)

≤‖∇f(θn)‖+ (C̃3τ + C̃2τ
2 + C̃2C̃3τ

3)g−1(θn)

≤‖∇f(θn)‖+ C̃4τg
−1(θn)

for n0 ≤ n ≤ j ≤ min{m0 − 1, a(n, τ)}.22 Then, (60) implies∥∥∥∥∥
j∑
i=n

αiξi

∥∥∥∥∥ ≤ τ2g−1(θn) + δ
(
‖∇f(θn)‖+ C̃4τg

−1(θn)
) j∑
i=n

αi ≤ δτ‖∇f(θn)‖+ 2C̃4τ
2g−1(θn) (61)

for n0 ≤ n ≤ j < min{m0, a(n, τ)}. Consequently,

‖θj − θn‖ ≤
j−1∑
i=n

αi‖∇f(θi)‖+

∥∥∥∥∥
j−1∑
i=n

αiξi

∥∥∥∥∥
≤
(
‖∇f(θn)‖+ C̃4τg

−1(θn)
)(j−1∑

i=n

αi + δτ

)
+ 2C̃4τ

2g−1(θn)

≤3τg−1(θn) (62)

for n0 ≤ n ≤ j ≤ min{m0 − 1, a(n, τ)} (notice that δ < 1, C̃4τ ≤ 1/4). Therefore,

|φ1,n(τ)| ≤C̃2‖∇f(θn)‖
a(n,τ)−1∑
i=n

αi‖θi − θn‖ ≤ 3C̃2τg
−1(θn)‖∇f(θn)‖

a(n,τ)−1∑
i=n

αi ≤ 3C̃2τ
2g−2(θn)

for n ≥ n0 satisfying a(n, τ) < m0. We also have

|φ2,n(τ)| ≤C̃2‖θa(n,τ) − θn‖2 ≤ 9C̃2τ
2g−2(θn)

for n ≥ n0 satisfying a(n, τ) < m0. Thus,

|φn(τ)| ≤C̃4τ
2g−2(θn) (63)

when n ≥ n0, a(n, τ) < m0. Additionally, as a result of (58), (61), we get

‖∇f(θn)‖
a(n,τ)−1∑
i=n

αi −

∥∥∥∥∥∥
a(n,τ)−1∑
i=n

αiξi

∥∥∥∥∥∥ ≥(1− δ − ε)τ‖∇f(θn)‖ − 2C̃4τ
2g−1(θn)

=5ετ‖∇f(θn)‖ − 2C̃4τ
2g−1(θn)

≥3ετ‖∇f(θn)‖

when n ≥ n0, a(n, τ) < m0.23 Then, (20), (63) imply

f(θa(n,τ))− f(θn) ≤− 3ετ‖∇f(θn)‖2 + C̃4τ
2g−2(θn) ≤ −ετ‖∇f(θn)‖2 ≤ −ετc2 (64)

for n ≥ n0 satisfying a(n, τ) < m0.24

21Notice that τ , T are defined as τ = 4−1C̃−1
4 εc2, T = 2C̃1ε−1c−2. Notice also τ < 1 < T since C̃1, C̃4 ∈ [1,∞), ε, c ∈ (0, 1).

22Notice that
∑j−1
i=n αi ≤ τ < 1 when n ≤ j ≤ a(n, τ). Notice also g−1(θn) > ‖∇f(θn)‖ and exp(2C̃2τ) ≤ 2C̃2τ exp(2C̃2) =

C̃3τ .
23Notice that 1−δ = 6ε, ε ≥ εc ≥ 2C̃4τ . Notice also that 2ετ‖∇f(θn)‖ ≥ ετ‖∇f(θn)‖+ετc ≥ 2C̃4τ2g−1(θn) for n0 ≤ n < m0.
24Notice that 2ε‖∇f(θn)‖2 ≥ ε‖∇f(θn)‖2 + εc2 ≥ C̃4τg−2(θn) for n0 ≤ n < m0.
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Let {nk}k≥0 be the sequence recursively defined by nk+1 = a(nk, τ) for k ≥ 0. Now, we show by contradic-

tion ω ∈ Λ (i.e., ‖θn‖ < ρ for infinitely many n). We assume the opposite. Then, m0 =∞ and ‖θn‖ ≥ ρ for

n ≥ n0, while (64) implies f(θnk+1
)− f(θnk) ≤ −ετc2 for k ≥ 0. Hence, limk→∞ f(θnk) = −∞. However, this

is impossible due to Assumption A1.1. Thus, ω ∈ Λ (i.e., ‖θn‖ < ρ for infinitely many n). Therefore, m0, n0

are defined through (59), and thus, ‖θn0−1‖ < ρ, ‖θm0
‖ > ρ2. Combining this with (58), we conclude

‖θn0 − θn0−1‖ ≤ τg−1(θn0−1) ≤ τ(C̃2 + 1) ≤ 1/2

(notice that ‖∇f(θn0−1)‖ ≤ C̃2, C̃2τ ≤ 1/4). Consequently,

‖θn0
‖ ≤ ‖θn0−1‖+ ‖θn0

− θn0−1‖ ≤ ρ+ 1/2 < ρ2. (65)

Hence, n0 < m0, f(θn0) ≤ C̃1.

Let i0, j0 be the integers defined by j0 = max{j ≥ 0 : nj < m0}, i0 = nj0 . Then, we have n0 ≤ i0 = nj0 <

nj0+1 = m0 ≤ a(i0, τ). As a result of this and (62), we get

‖θm0 − θi0‖ ≤ 3τg−1(θi0) ≤ 3τ(C̃2 + 1) ≤ 1/2

(notice that ‖∇f(θi0)‖ ≤ C̃2, C̃2τ ≤ 1/12). Consequently,

‖θi0‖ ≥ ‖θm0‖ − ‖θm0 − θi0‖ ≥ ρ2 − 1/2 > ρ1. (66)

Let {γn}n≥0, θ0(·) have the same meaning as in Section 5. Now, we show by contradiction that γi0−γn0
≥ T .

We assume the opposite. Then, (60), (65) imply

‖θ0(t)‖ = ‖θj‖ ≤‖θn0
‖+

j−1∑
i=n0

αi‖∇f(θi)‖+

∥∥∥∥∥
j−1∑
i=n0

αiξi

∥∥∥∥∥
≤‖θn0‖+ τ2g−1(θn0) + 2

j−1∑
i=n0

αi‖∇f(θi)‖

≤ρ+ 1 + 2

j−1∑
i=n0

αiφ(‖θi‖)

≤ρ+ 1 + 2

∫ t

γn0

φ(‖θ0(s)‖)ds (67)

for t ∈ [γj , γj+1), n0 ≤ j ≤ i0.25 Applying the comparison principle (see [19, Section 3.4]) to (55), (67), we

conclude ‖θ0(t)‖ ≤ λ(t− γn0 ; ρ+ 1) ≤ ρ1 for all t ∈ [γn0 , γi0 ]. Thus, ‖θi0‖ = ‖θ0(γi0)‖ ≤ ρ1. However, this is

impossible, due to (66). Hence, γi0 − γn0 ≥ T . Consequently,

T ≤ γi0 − γn0 =

j0−1∑
j=0

(γnj+1 − γnj ) ≤ j0τ (68)

(notice that nj0 = i0, γnj+1
− γnj =

∑nj+1−1
i=nj

αi ≤ τ).

Owing to (64), we have f(θnj+1
)− f(θnj ) ≤ −ετc2 for 0 ≤ j ≤ j0. Combining this with (68), we get

f(θi0) = f(θnj0 ) ≤ f(θn0
)− j0ετc2 ≤ C̃1 − εc2T ≤ −C̃1.

However, this is impossible, since f(θ) > −C̃1 for all θ ∈ Rdθ . Hence, ‖θn‖ > ρ2 for finitely many n.

25As j ≤ i0 < m0, we have γj−γn0 ≤ γi0 −γn0 ≤ T and j ≤ min{m0−1, a(n0, T )}. We also have τ2g−1(θn0 ) ≤ τ2(C̃2 +1) ≤
1/2.
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Appendix 2

In this section, a global version of Theorem 3.1 is presented. This result is based the following assumptions.

Assumption A2.1. There exists a Borel-measurable function ϕ : Rdz → [1,∞) such that

max{‖F (θ, z)‖, ‖F̃ (θ, z)‖, ‖(ΠF̃ )(θ, z)‖} ≤ ϕ(z)(‖∇f(θ)‖+ 1),

‖(ΠF̃ )(θ′, z)− (ΠF̃ )(θ′′, z)‖ ≤ ϕ(z)‖θ′ − θ′′‖

for all θ, θ′, θ′′ ∈ Rdθ , z ∈ Rdz . In addition, one has

sup
n≥0

E(ϕ2(Zn)|θ0 = θ, Z0 = z) <∞

for all θ ∈ Rdθ , z ∈ Rdz .

Assumption A2.2. ηn = η(θn) for n ≥ 0, where η : Rdθ → Rdθ is a continuous function. Moreover, there

exists a real number δ ∈ (0, 1) such that ‖η(θ)‖ ≤ δ‖∇f(θ)‖ for all θ ∈ Rdθ satisfying ‖θ‖ ≥ ρ (ρ is specified

in Assumption A1.1).

Assumption A2.1 is a global version of Assumption 3.3. In a similar form, it is involved in the stability

analysis of stochastic approximation carried out in [7, Section II.1.9]. Assumption A2.2 is related to the

bias of the gradient estimator. It requires the bias {ηn}n≥0 to be a deterministic function of the algorithm

iterates {θn}n≥0. As demonstrated in Section 4 and [33], this is often satisfied in practice. Assumption

A2.2 can be considered as one of the weakest conditions under which the stability of the perturbed ODE

dθ/dt = −(∇f(θ) + η(θ)) can be shown.

Our results on the stability and asymptotic bias of algorithm (13) are provided in the next theorem.

Theorem A2.1. Suppose that Assumptions 3.1, 3.2, A1.1, A2.1 and A2.2 hold. Let f(·) be the function

specified in Assumption 3.2. Then, the following is true:

(i) If f(·) satisfies Assumption 2.3.a, Part (i) of Theorem A1.1 holds.

(ii) If f(·) satisfies Assumption 2.3.b, Part (ii) of Theorem A1.1 holds.

(iii) If f(·) satisfies Assumption 2.3.c, Part (iii) of Theorem A1.1 holds.

Proof. Let g(·), h(·) be the functions defined in Assumption A1.2. Then, due to Assumption A2.2, g(θ)η(θ) is

uniformly bounded in θ ∈ Rdθ , while h(θ)η(θ) ≤ δ for all θ ∈ Rdθ satisfying ‖θ‖ ≥ ρ. Let C ∈ [1,∞) stand for

a (global) Lipschitz constant of ∇f(·) and for an (global) upper bound of g(·)η(·). Define τ = 1/(18C2) and

let {ζn}n≥0, {ζ1,n}n≥0, {ζ2,n}n≥0, {ζ3,n}n≥0 have the same meaning as in the proof of Theorem 3.1, while τn
is the stopping time defined by

τn = min
({
j ≥ n : g(θn)g−1(θj) > 3

}
∪ {∞}

)
for n ≥ 0. Finally, for θ ∈ Rdθ , z ∈ Rdz , let Eθ,z(·) denote the conditional mean given θ0 = θ, Z0 = z.

As a direct consequence of Assumptions 3.1, A2.1, we get

Eθ,z

( ∞∑
n=0

α2
nϕ

2(Zn+1)

)
<∞

for all θ ∈ Rdθ , z ∈ Rdz . We also have

g(θn)‖ζn‖ ≤ ϕ(Zn+1) + 1 ≤ 2ϕ(Zn+1)

for n ≥ 0. Consequently,

lim
n→∞

αnϕ(Zn+1) = lim
n→∞

αng(θn)‖ζn‖ = 0 (69)

almost surely.
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Let {mk}k≥0 be the sequence recursively defined by m0 = 0 and mk+1 = a(mk, τ) for k ≥ 0. Moreover, let

Fn = σ{θ0, Z0, . . . , θn, Zn} for n ≥ 0. Due to Assumption 3.2, we have

Eθ,z
(
g(θn)ζ1,jI{τn>j}|Fj

)
= g(θn)

(
Eθ,z(F̃ (θj , Zj+1)|Fj)− (ΠF̃ )(θj , Zj)

)
I{τn>j} = 0

almost surely for each θ ∈ Rdθ , z ∈ Rdz , 0 ≤ n ≤ j (notice that {τn > j} is measurable with respect to Fj).
Moreover, Assumption A2.1 implies

g(θn)‖ζ1,j‖I{τn>j} ≤ g(θn)g−1(θj)(ϕ(Zj) + ϕ(Zj+1))I{τn>j} ≤ 3(ϕ(Zj) + ϕ(Zj+1))

for 0 ≤ n ≤ j. Then, as a result of Doob inequality, we get

Eθ,z

 max
n<j<a(n,τ)

∥∥∥∥∥
j∑

i=n+1

αig(θn)ζ1,i

∥∥∥∥∥
2

I{τn>j}

 ≤Eθ,z
 max
n<j<a(n,τ)

∥∥∥∥∥
j∑

i=n+1

αig(θn)ζ1,iI{τn>i}

∥∥∥∥∥
2


≤4Eθ,z

a(n,τ)−1∑
i=n+1

α2
i g

2(θn)‖ζ1,i‖2I{τn>i}


≤72Eθ,z

a(n,τ)∑
i=n+1

α2
i

(
ϕ2(Zi) + ϕ2(Zi+1)

)
for all θ ∈ Rdθ , z ∈ Rdz , n ≥ 0. Combining this with Assumptions 3.1, A2.1, we deduce

Eθ,z

 ∞∑
k=0

g2(θmk) max
mk<j<mk+1

∥∥∥∥∥
j∑

i=mk

αiζ1,i

∥∥∥∥∥
2

I{τmk>j}

 ≤72Eθ,z

( ∞∑
n=0

(α2
i + α2

i+1)ϕ2(Zi+1)

)
<∞

for each θ ∈ Rdθ , z ∈ Rdz , n ≥ 0. Therefore,

lim
k→∞

g(θmk) max
mk<j<mk+1

∥∥∥∥∥
j∑

i=mk

αiζ1,i

∥∥∥∥∥ I{τmk>j} = 0 (70)

almost surely.

Since αnαn+1 = O(α2
n), αn − αn+1 = O(α2

n) for n→∞ (see the proof of Theorem 3.1), Assumptions 3.1,

A2.1 yield

Eθ,z

( ∞∑
n=0

αnαn+1ϕ
2(Zn+1)

)
<∞, Eθ,z

( ∞∑
n=0

|αn − αn+1|ϕ2(Zn+1)

)
<∞

for all θ ∈ Rdθ , z ∈ Rdz . Additionally, due to Assumptions A2.1, A2.2, we have

g(θn)‖ζ2,j‖I{τn>j} ≤g(θn)ϕ(Zj)‖θj − θj−1‖I{τn>j−1}

≤αj−1g(θn)ϕ(Zj)(‖F (θj−1, Zj)‖+ ‖ηj−1‖)I{τn>j}
≤αj−1g(θn)g−1(θj−1)ϕ(Zj)(ϕ(Zj) + C)I{τn>j}

≤6Cαj−1ϕ
2(Zj)

for 0 ≤ n < j (notice that ϕ(z) ≥ 1 for any z ∈ Rdz ). We also have

g(θn)‖ζ3,j‖I{τn>j} ≤ g(θn)g−1(θj)ϕ(Zj+1)I{τn>j} ≤ 3ϕ(Zj+1) ≤ 3ϕ2(Zj+1)

for 0 ≤ n ≤ j. Hence,

g(θn)

∥∥∥∥∥
j∑

i=n+1

αiζ2,i

∥∥∥∥∥ I{τn>j} ≤
j∑

i=n+1

αig(θn)‖ζ2,i‖I{τn>i} ≤ 6C

j∑
i=n

αiαi+1ϕ
2(Zi+1),

g(θn)

∥∥∥∥∥
j∑

i=n+1

(αi − αi+1)ζ3,i

∥∥∥∥∥ I{τn>j} ≤
j∑

i=n+1

|αi − αi+1|g(θn)‖ζ3,i‖I{τn>i} ≤ 3

j∑
i=n+1

|αi − αi+1|ϕ2(Zi+1)
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for 0 ≤ n < j. Consequently,

lim
n→∞

g(θn) max
j>n

∥∥∥∥∥
j∑

i=n+1

αiζ2,i

∥∥∥∥∥ I{τn>j} = lim
n→∞

g(θn) max
j>n

∥∥∥∥∥
j∑

i=n+1

(αi − αi+1)ζ3,i

∥∥∥∥∥ I{τn>j} = 0 (71)

almost surely (notice that αj+1/αj = O(1) for j →∞). Moreover, (69) yields

lim
n→∞

g(θn) max
j≥n

αj+1‖ζ3,j‖I{τn>j} = 0 (72)

almost surely. Combining (69) – (72) with (37), we deduce

lim
k→∞

g(θnk) max
mk≤j<mk+1

∥∥∥∥∥
j∑

i=mk

αiζi

∥∥∥∥∥ I{τmk>j} = 0 (73)

almost surely.

Owing to Assumptions A1.1, A2.2, we have

g−1(θj+1)I{τn>j} ≤g
−1(θn) + ‖∇f(θj+1)−∇f(θn)‖I{τn>j}

≤g−1(θn) + C‖θj+1 − θn‖I{τn>j}

≤g−1(θn) + C

j∑
i=n

αi‖∇f(θi)‖I{τn>j} + C

∥∥∥∥∥
j∑
i=n

αiζi

∥∥∥∥∥ I{τn>j} + C

j∑
i=n

αi‖ηi‖I{τn>j}

≤g−1(θn) + C

∥∥∥∥∥
j∑
i=n

αiζi

∥∥∥∥∥ I{τn>j} + 2C2

j∑
i=n

αig
−1(θi)I{τn>j}

for 0 ≤ n ≤ j (notice that ‖η(θ)‖ ≤ Cg−1(θ) for each θ ∈ Rdθ ). Combining this with Bellman-Gronwall

inequality (see e.g., [12, Appendix B]), we conclude

g−1(θj+1)I{τn>j} ≤

(
g−1(θn) + C max

n≤j<a(n,τ)

∥∥∥∥∥
j∑
i=n

αiζi

∥∥∥∥∥ I{τn>j}
)

exp

(
2C2

j−1∑
i=n

αi

)

≤2g−1(θn)

(
1 + Cg(θn) max

n≤j<a(n,τ)

∥∥∥∥∥
j∑
i=n

αiζi

∥∥∥∥∥ I{τn>j}
)

for 0 ≤ n ≤ j ≤ a(n, τ).26 Then, (73) yields

lim sup
k→∞

g(θmk) max
mk≤j<mk+1

g−1(θj+1)I{τmk>j} ≤ 2 (74)

almost surely.

Let N0 be the event where (73) or (74) does not hold. Then, in order to prove the theorem’s assertion, it

is sufficient to show that (53), (54) are satisfied on N c
0 for any t ∈ (0,∞). Let ω be any sample in N c

0 , while

t ∈ (0,∞) is any real number. Notice that all formula which follow in the proof correspond to ω.

Due to Assumption A2.2, we have

lim sup
n→∞

g(θn)‖ηn‖ ≤ C <∞, lim sup
n→∞

h(θn)‖ηn‖ ≤ δ < 1.

Moreover, Assumption 3.1 and (21), (74) imply that there exists an integer k0 ≥ 0 (depending on ω) such

that

mk+1−1∑
i=mk

αi ≥ τ/2, g(θmk)

∥∥∥∥∥
j∑

i=mk

αiζi

∥∥∥∥∥ I{τmk>j} ≤ τ, g(θmk)g−1(θj+1)I{τmk>j} ≤ 3 (75)

26Notice that
∑j−1
i=n αi ≤ τ for n ≤ j ≤ a(n, τ). Notice also that exp(2C2τ) ≤ exp(1/2) ≤ 2.
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for k ≥ k0, mk ≤ j < mk+1. As τn > n for n ≥ 0, we conclude τmk > mk+1 for k ≥ k0.27 Consequently,

I{τmk>j} = 1 for k ≥ k0, mk ≤ j ≤ mk+1. Combining this with (75), we get g(θmk) ≤ 3g(θj+1) and

g−1(θj+1) ≥g−1(θmk)− ‖∇f(θj+1)−∇f(θn)‖
≥g−1(θmk)− C‖θj+1 − θn‖

≥g−1(θmk)− C
j∑

i=mk

αi‖∇f(θi)‖ − C

∥∥∥∥∥
j∑

i=mk

αiζi

∥∥∥∥∥− C
j∑

i=mk

αi‖ηi‖

≥g−1(θmk)− 2C2

j∑
i=mk

αig
−1(θi)− C

∥∥∥∥∥
j∑

i=mk

αiζi

∥∥∥∥∥
≥g−1(θmk)(1− 6C2τ − Cτ)

≥3−1g−1(θmk) (76)

for k ≥ k0, mk ≤ j < mk+1.28 Hence, 3−1g(θmk) ≤ g(θj) ≤ 3g(θmk) for k ≥ k0, mk ≤ j ≤ mk+1.

Let n0 = mk0 , while k(n) = max{k ≥ 0 : mk ≤ n}, m(n) = mk(n) for n ≥ 0. Then, (76) implies

g(θn) ≤ 3g(θm(n)), g(θmk) ≤ 3g(θmk+1
) for n ≥ n0, k ≥ k0 (notice that k(n) ≥ k0, mk(n) ≤ n < mk(n)+1 when

n ≥ n0). Hence, g(θn) ≤ Cn,k g(θmk) for n ≥ n0, k ≥ m(n), where Cn,k = 3k−k(n)+1.29 Since

2−1(k(j)− k(n))τ ≤
k(j)∑

k=k(n)+1

mk+1−1∑
i=mk

αi ≤
j∑
i=n

αi ≤ t

for n0 ≤ n ≤ j ≤ a(n, τ), we conclude k(j)− k(n) ≤ 2t/τ for the same n, j. Consequently,

g(θn)

∥∥∥∥∥
j∑
i=n

αiζi

∥∥∥∥∥ =g(θn)

∥∥∥∥∥∥
k(j)∑

k=k(n)

mk+1−1∑
i=mk

αiζi −
n−1∑

i=m(n)

αiζi +

j∑
i=m(j)

αiζi

∥∥∥∥∥∥
≤
k(j)−1∑
k=k(n)

Cn,k g(θmk)

∥∥∥∥∥
mk+1−1∑
i=mk

αiζi

∥∥∥∥∥+ Cn,k(n) g(θm(n))

∥∥∥∥∥∥
n−1∑

i=m(n)

αiζi

∥∥∥∥∥∥
+ Cn,k(j) g(θm(j))

∥∥∥∥∥∥
j∑

i=m(j)

αiζi

∥∥∥∥∥∥
≤C(t) max

mk≤l<mk+1

k(n)≤k

g(θmk)

∥∥∥∥∥
l∑

i=mk

αiζi

∥∥∥∥∥
for n0 ≤ n ≤ j ≤ a(n, t),30 where C(t) = (2t/τ + 3)32t/τ+3. Since τmk > mk+1 for k ≥ k0 (i.e., I{τmk>j} = 1

for k ≥ k0, mk ≤ j ≤ mk+1), (73) implies

lim
n→∞

g(θn) max
n≤j<a(n,t)

∥∥∥∥∥
j∑
i=n

αiζi

∥∥∥∥∥ = 0

(notice that limn→∞ k(n) =∞). Hence, (53), (54) hold.
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27If τmk ≤ mk+1, then τmk = j and g(θmk )g−1(θj)I{τmk>j−1} = g(θmk )g−1(θj) > 3 for some j satisfying mk < j ≤ mk+1.

28Notice that g−1(θi) ≤ 3g−1(θmk ),
∑mk+1−1
mk αi ≤ τ when k ≥ k0, mk ≤ i < mk+1. Notice also that 6C2τ = 1/3, Cτ ≤ 1/3.

29Notice that g(θn)g−1(θm(n)) ≤ 3, g(θm(n))g
−1(θmk ) ≤ 3k−k(n) when n ≥ n0, k ≥ m(n). Notice also g(θn) =(

g(θn)g−1(θm(n))
) (
g(θm(n))g

−1(θmk )
)
g(θmk ).

30Here, the following convention is used: If the lower limit of a sum is (strictly) greater than the upper limit, then the sum is

zero.
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[5] M. Benäım, J. Hofbauer, and S. Sorin, Stochastic approximations and differential inclusions, SIAM

Journal on Control and Optimization, 44 (2005), pp. 328 – 348.
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