Journal article
Endogenous miRNA sponges mediate the generation of oscillatory dynamics for a non-coding RNA network
- Abstract:
- Oscillations are crucial to the normal function of living organisms, across a wide variety of biological processes. In eukaryotes, oscillatory dynamics are thought to arise from interactions at the protein and RNA levels; however, the role of non-coding RNA in regulating these dynamics remains understudied. In this work, we show how non-coding RNA acting as microRNA (miRNA) sponges in a conserved miRNA - transcription factor feedback motif, can give rise to oscillatory behaviour, and how to test for this experimentally. Control of these non-coding RNA can dynamically create oscillations or stability, and we show how this behaviour predisposes to oscillations in the stochastic limit. These results, supported by emerging evidence for the role of miRNA sponges in development, point towards key roles of different species of miRNA sponges, such as circular RNA, potentially in the maintenance of yet unexplained oscillatory behaviour. These results help to provide a paradigm for understanding functional differences between the many redundant, but distinct RNA species thought to act as miRNA sponges in nature, such as long non-coding RNA, pseudogenes, competing mRNA, circular RNA, and3′ UTRs.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Accepted manuscript, pdf, 1.5MB, Terms of use)
-
- Publisher copy:
- 10.1016/j.jtbi.2018.10.055
Authors
+ Cancer Research UK
More from this funder
- Funding agency for:
- Dhawan, A
- Grant:
- Cancer Centre
- CBIG:23969
- Publisher:
- Elsevier
- Journal:
- Journal of Theoretical Biology More from this journal
- Volume:
- 481
- Pages:
- 54-60
- Publication date:
- 2018-10-30
- Acceptance date:
- 2018-10-29
- DOI:
- EISSN:
-
1095-8541
- ISSN:
-
0022-5193
- Pmid:
-
30385313
- Language:
-
English
- Keywords:
- Pubs id:
-
pubs:940882
- UUID:
-
uuid:f5244c3b-6aee-4d01-9281-52e7e39359cf
- Local pid:
-
pubs:940882
- Source identifiers:
-
940882
- Deposit date:
-
2018-12-03
Terms of use
- Copyright holder:
- Elsevier Ltd
- Copyright date:
- 2018
- Notes:
- © 2018 Elsevier Ltd. All rights reserved. This is the accepted manuscript version of the article. The final version is available online from Elsevier at: https://doi.org/10.1016/j.jtbi.2018.10.055
If you are the owner of this record, you can report an update to it here: Report update to this record