CARBONIC ANHYDRASE ACTIVITY AND ITS ROLE IN MEMBRANE H⁺-EQUIVALENT TRANSPORT IN MAMMALIAN VENTRICULAR MYOCYTES

Francisco C. Villafuerte
Exeter College
University of Oxford

Thesis submitted for the degree of Doctor of Philosophy
Michaelmas Term 2007
Abstract

Carbonic anhydrase activity and its role in membrane H\(^+\)-equivalent transport in mammalian ventricular myocytes

Francisco C. Villafuerte
Exeter College, Oxford

Carbonic anhydrases (CAs) are fundamental and ubiquitous enzymes that catalyse the reversible hydration of CO\(_2\) to form HCO\(_3\)\(^-\) and H\(^+\) ions. Evidence derived from heterologous expression systems has led to the proposal of a novel role for CA in intracellular pH regulation, where its physical and functional coupling to membrane H\(^+\)-equivalent transport proteins appears to enhance their activity. It has yet to be established whether such a functional association occurs naturally in wild-type cells. Additional evidence on CA activity *in-vitro*, has also suggested that certain CA isoforms are regulated by physiological changes of pH, an effect that may then affect their ability to enhance H\(^+\)-equivalent transport. No information, however, exists on the pH sensitivity of CA in intact cells. Finally, pharmacological inhibition of CA activity has been reported previously for various compounds, in addition to those designed specifically as CA inhibitors. It is possible that some compounds, currently used to inhibit membrane H\(^+\) transport, may also target CA. The present work has examined functional aspects of CA activity in ventricular myocytes isolated enzymically from rat heart, focusing on the potential role of CA in controlling sarcolemmal Na\(^+/\)H\(^+\) exchange (NHE) and sarcolemmal Na\(^+\)-HCO\(_3\)\(^-\) cotransport (NBC). NHE and NBC activity were estimated from the rate of recovery of intracellular pH (pH\(_i\)), following an intracellular acid load in myocytes loaded with carboxy-SNARF-1 (a pH-sensitive fluorescent dye, used to measure pH\(_i\)). In other experiments, *in-vitro* CA activity was assessed from the time-course of pH change after addition of CO\(_2\)-saturated water to a buffered solution containing either CA II or a cardiac homogenate. In further experiments, intracellular CA activity was assessed from the rate of CO\(_2\)-induced fall of pH\(_i\). Three major results emerged: (i) In intact myocytes, CA activity doubles acid extrusion on sarcolemmal NBC, but has no effect on NHE activity. Facilitation of NBC activity by CA is likely to be mediated by an intracellular CA isoform. (ii) *In-vitro* and intracellular CA activity displays strong pH-dependence within the physiological pH range, activity declining with a fall of pH. (iii) The NHE inhibitor, cariporide, the bicarbonate transport inhibitors DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) and S0859 (an experimental compound from Sanofi-Aventis), and the aquaporin blocker, pCMBS (p-chloromercuribenzenesulphonate), all showed strong inhibitory activity towards CA *in-vitro*, but had no effect on intracellular CA activity.

Overall, the work provides the first clear demonstration of a functional role of CA activity in H\(^+\)-equivalent transport in a wild-type cell. CA thus represents an important regulatory mechanism of H\(^+\)-equivalent transport. The pH sensitivity displayed by *in-vitro* and intracellular CA activity may also have significant functional consequences for pH\(_i\) regulation. CA inhibition by various membrane transport inhibitors highlights the need for careful drug and experimental design, to avoid secondary inhibition of CA activity and its side-effects. The present work thus provides insight into the functional roles of CA, plus important new information on the enzyme's pharmacological properties.
ACKNOWLEDGEMENTS

Firstly, I would like to thank Professor Richard Vaughan-Jones for his supervision and guidance during my time in Oxford. I am grateful for his support, objectivity, encouragement and patience, and for the opportunity to work in his laboratory. I also have greatly appreciated his advice, comments, and help on the early versions of this manuscript.

I would like to thank the members of the group, particularly Dr. Pawel Swietach and Mr. Philip Cobden for their friendship and support during these years. A special thanks to Pawel for all his help with the experimental techniques and analysis of data. To both of them, thanks for such an enjoyable time at work.

I am grateful to Professor Kenneth W. Spitzer at the University of Utah, USA, for his kindness, patience, and useful advice during my electrophysiology training at CVRTI, Utah and also in Oxford.

I would like to thank my family, specially my parents. Mom and Dad were always there to give me their support, love, and encouragement during these years away from home. I cannot recall a single day Mom did not talk to me over the phone or the internet!

I would also like to thank all my close friends in Lima and the USA for showing care and support at all times.

This work was possible thanks to the generous support of The Wellcome Trust and the Overseas Research Student (ORS) Award Scheme.
Contents

CHAPTER 1 – General Introduction

1.1. Importance of Intracellular pH 1
1.2. Regulation of Intracellular pH 3

1.2.1. Na\(^+\)-H\(^+\) Exchange (NHE) 6
 1.2.1.1. NHE isoforms in mammals 6
 1.2.1.2. NHE structure and membrane topology 8
 1.2.1.3. NHE activity and regulation 9
 1.2.1.4. NHE pharmacological inhibition 10

1.2.2. Na\(^+\)-HCO\(_3\)^\(^-\) Co-transport (NBC) 12
 1.2.2.1. NBC isoforms in mammals 13
 1.2.2.2. NBC structure and membrane topology 14
 1.2.2.3. NBC activity and regulation 15
 1.2.2.4. NBC pharmacological inhibition 18

1.3. Intracellular Buffering 18

1.4. Carbonic Anhydrase 24
 1.4.1. General structure of \(\alpha\)-CAs 28
 1.4.2. Carbonic anhydrase activity and function 31
 1.4.3. Inhibitors of CA activity and their use in physiology and clinic 35

CHAPTER 2 – General Methods

2.1. Ventricular myocyte isolation 39

2.2. Solutions and ventricular myocytes superfusion 42
 2.2.1. Solutions 42
 2.2.2. Superfusion chamber for cardiac myocytes 45

2.3. Drugs 46

2.4. Enzyme and ventricular tissue preparation 47
 2.4.1. CA II 47
 2.4.2. Cardiac ventricular homogenates for CA activity assay 48
2.5. Assay of carbonic anhydrase activity

2.6. Measurement of intracellular pH: whole-cell epifluorescence microscopy
 2.6.1. Calibration of pH

2.7. Measurement of the reversible intracellular CO₂ hydration in intact myocytes

CHAPTER 3 – Effect of Membrane Transport Inhibitors on Carbonic Anhydrase Activity

3.1. Introduction
 3.1.1. Catalytic mechanism of carbonic anhydrase
 3.1.2. Inhibition of carbonic anhydrase activity
 3.1.2.1. Inhibition by anions
 3.1.2.2. Inhibition by sulphonamides

3.2. Methods
 3.2.1. CA activity assay
 3.2.2. Measurement of intracellular reversible CO₂ hydration in intact myocytes
 3.2.3. Drugs

3.3. Results
 3.3.1. Effect of sulphonamides on CA activity
 3.3.2. Screening the effect of membrane transport inhibitors on carbonic anhydrase activity
 3.3.3. Effect of membrane transport inhibitors on intracellular carbonic anhydrase activity in intact cardiac myocytes

3.4. Discussion
 3.4.1. Many membrane transport inhibitors affect CA activity in vitro
 3.4.1.1. Effect of Na⁺/H⁺ exchange inhibitors
 3.4.1.2. Effect of HCO₃⁻ transport inhibitors
 3.4.1.3. Effect of aquaporin inhibitors
 3.4.2. Effect of membrane transport inhibitors on intracellular CA activity

CHAPTER 4 – Effect of Carbonic Anhydrase Activity on Sarcolemmal H⁺-equivalent Extrusion

4.1. Introduction

4.2. Methods
 4.2.1. General methods
 4.2.2. Drugs
 4.2.3. CA activity assay
4.2.4. NHE and NBC-mediated acid efflux measurement 108
4.2.5. Measurement of intracellular reversible CO2 hydration in intact myocytes 110

4.3. Results 111
4.3.1. Effect of the membrane-impermeant inhibitor 14v on CA activity 111
4.3.2. Effect of CA inhibitors on intracellular reversible CO2 hydration rates 113
4.3.3. Effect of CA inhibitors on sarcolemmal acid efflux 115
 4.3.3.1. Role of CA in NHE-mediated acid extrusion 115
 4.3.3.2. Role of CA in NBC-mediated acid extrusion 119

4.4. Discussion 126
4.4.1. CA activity does not facilitate NHE-mediated acid efflux 126
4.4.2. NBC-mediated acid extrusion is facilitated by CA activity 128
4.4.3. Intracellular CA activity facilitates NBC-mediated acid extrusion 131

CHAPTER 5 - pH-Dependence of Carbonic Anhydrase Activity 136

5.1. Introduction 137
 5.1.1. pH-sensitivity of CA 137

5.2. Methods 139
 5.2.1. CA activity assay 139
 5.2.2. pH-sensitivity of the intracellular reversible CO2 hydration 143

5.3. Results 147

5.4. Discussion 152
 5.4.1. Possible consequences of CA pH-sensitivity 155
 5.4.1.1. Effect on buffering 155
 5.4.1.2. Effect on intracellular H+ mobility 155
 5.4.1.3. Effect on membrane H+-equivalent transport 156

Chapter 6 - General Discussion 158

6.1. Functional roles of CA 160
 6.1.1. Functional bicarbonate transport metabolon in cardiac myocytes 160
 6.1.2. Inhibition of CA activity by various membrane transport inhibitors 161
 6.1.3. Paradox of H+-inhibition of CA activity 163

6.2. Conclusion 167

References 168
Abbreviations

AE Anion (Cl⁻/HCO₃⁻) Exchange
AQP Aquaporin
ATZ Acetazolamide
CA Carbonic Anhydrase
CAPSO 3-(Cyclohexylamino)-2-hydroxy-1-propanesulphonic acid
CHE Cl⁻/OH⁻ Exchange
DIDS 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid
DMA 5-(N,N-dimethyl)amiloride
EGTA Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid
EIPA 5-(N-Ethyl-N-isopropyl) amiloride
ENBC NBC equilibrium potential
ETZ Ethoxyzolamide
GPI Glycosylphosphatidylinositol
Hepes 4-(2-Hydroxyethyl)piperazine-1-ethanesulphonic acid
HOE 642 4-isopropyl-3-(methylsulphonyl)benzoyl guanidine methanesulphonate
HOE-694 3-methylsulphonyl-4-piperidinobenzoyl guanidine methanesulphonate
INBC NBC current
J⁺⁺ Acid efflux
JNBC NBC-mediated acid efflux
JNHE NHE-mediated acid-efflux
MCT Monocarboxylate Transporter
MES 2-(N-Morpholino) ethanesulphonic acid
NBC Na⁺-HCO₃⁻ co-transport
NHE Na⁺/H⁺ exchange
NMDG N-Methyl-D-Glucamine
pCMBS p-chloromercuribenzenesulphonate
pHᵢ Intracellular pH
pHₒ Extracellular pH
PKA Protein kinase A
PKC Protein kinase C
SR Sarcoplasmic reticulum
β Buffering capacity
β_{CO2} CO_{2}-dependent buffering capacity
β_{int} Intrinsic buffering capacity
β_{tot} Total intracellular buffering capacity
[Ca^{2+}]_i Intracellular Ca^{2+} concentration
[K^{+}]_o Extracellular K^{+} concentration
[Na^{+}]_i Intracellular Na^{+} concentration
1.1. Importance of Intracellular pH

A basic property of life is the ability of an organism to regulate its internal environment to maintain a stable, constant condition. Multiple dynamic equilibrium adjustments and regulation mechanisms make this possible. This property of living organisms is known as homeostasis. Among the most important cellular homeostatic mechanisms are those which regulate intracellular pH (pHi). pHi is defined as the negative logarithm of the activity of hydrogen (H\(^+\)) ions and is given by the following equation:

\[
pHi = -\log_{10} a_{H^+} = -\log(\gamma_{H^+}[H^+])
\]

where \(a_{H^+}\) is H\(^+\)-ion activity, \(\gamma_{H^+}\) the H\(^+\) activity coefficient, and \([H^+]\) is the concentration of H\(^+\)-ions in the cytosolic space.

pHi influences the activity of virtually all cellular functions. Metabolic reactions can be significantly affected by pHi because of its influence on both protein conformation and enzyme activity (Andres et al., 1990; Bock & Frieden, 1976a; Bock & Frieden, 1976b; Dobson et al., 1986; Erecinska et al., 1995; Hochachka & Mommsen, 1983; Miccoli et al., 1996; Roos & Boron, 1981). Ion channel conductivity (Bear et al., 1988; Blatz, 1984), cell-cell coupling (Francis et al., 1999; Sorgen et al., 2004; Spray & Burt, 1990; Swietach et al., 2007a), intracellular signalling and cell cycle (Busa & Nuccitelli,
structure and function of the cytoskeleton (De Brabander et al., 1982; Sampath & Pollard, 1991), gene expression (Isfort et al., 1993), cell survival and apoptosis (Shrode et al., 1997) are all modulated by pH$_i$.

pH$_i$ also plays a particularly important role in the modulation of cardiac function as it has significant effects on Ca$^{2+}$-signalling, contractility, excitability and rhythm (Orchard & Cingolani, 1994; Orchard & Kentish, 1990). Several mechanisms account for the effect of pH$_i$ on cardiac function. Intracellular acidosis for example, affects Ca$^{2+}$-signalling by decreasing ionic currents through voltage-gated Ca$^{2+}$ channels (Blanchard et al., 1984; Blanchard & Solaro, 1984; Irisawa & Sato, 1986; Sato et al., 1985), reducing Ca$^{2+}$ release through ryanodine receptors in response to sarcolemmal depolarisation (Balnave & Vaughan-Jones, 2000; Choi et al., 2000a; Xu et al., 1996), and by reducing the activity of Ca$^{2+}$-ATPase, hence transiently reducing SR loading (Orchard & Kentish, 1990). Mechanisms related to reduced contractility caused by intracellular acidosis include reduced myosin ATPase activity (Kentish & Nayler, 1979), diminished binding of Ca$^{2+}$ to myofilaments (Allen & Orchard, 1983; Fabiato & Fabiato, 1978), or more specifically, to Troponin C (Blanchard et al., 1984; Blanchard & Solaro, 1984), and Ca$^{2+}$-independent reduction in actin-myosin cross-bridge formation (Swartz et al., 1999). Also, acidosis can affect cardiac excitability and rhythm by decreasing voltage-gated Na$^+$ channel current (Zhang & Siegelbaum, 1991), retarding the spread of the action potential through gap-junctions to neighbouring ventricular myocytes (Spray et al., 1985), and also lengthening of action potential duration (Janse & Wit, 1989) probably due to inhibition of repolarising K$^+$ currents (Komukai et al., 2002).
This list of mechanisms, although not exhaustive, is sufficient to illustrate the powerful and multifaceted influence pH has on cell and, in particular, cardiac myocyte function, and therefore the fundamental significance of efficient pH regulatory mechanisms. These mechanisms are particularly important since changes in pH occur during normal activity, e.g. during whole-body acid-base disturbances such as changes in ventilation (Roos & Boron, 1981), or in response to changes in the metabolic work-load placed on the heart (Bountra et al., 1988; Elliott et al., 1994). Events that affect extracellular pH (pH_o) would also result in a change of pH_i, and thus of cellular function.

It has been shown that in the physiological range, pH_i is almost linearly related to pH_o, with a 1 unit change in pH_o resulting in a 0.3-0.4 unit change in pH_i (Ellis & Thomas, 1976; Sun et al., 1996; Vaughan-Jones, 1986). Since it is essential to maintain a constant pH_i, major homeostatic mechanisms cells have evolved to counterbalance any rise or fall in pH_i created by these internal and external events.

1.2. Regulation of Intracellular pH

In the event of an intracellular acid or alkali load, changes in pH_i are minimised by intracellular buffers. Any displacements of pH_i then stimulate surface membrane acid/base transporters to add or remove H^+ (or their ionic equivalents), thereby restoring a favourable resting pH_i. The steady-state level to which pH_i is regulated depends on the balance between acid-equivalent extruders and acid-equivalent loaders. In mammalian cardiac cells, pH_i is normally controlled by four sarcolemmal H^+-equivalent transport processes. Na^+/H^+ exchange (NHE) and Na^+-HCO_3^- co-transport (NBC) are activated at low pH_i to extrude acid (Dart & Vaughan-Jones, 1992; Lagadic-Gossmann et al., 1992).
High pH$_i$, on the other hand, activates Cl$^-$ / HCO$_3^-$ (anion) exchange (AE) and Cl$^-$ / OH$^-$ exchange (CHE) that engage in H$^+$-equivalent loading (Sun et al., 1996; Vaughan-Jones, 1979). Extracellular pH (pH$_e$) also allosterically regulates the activity of these sarcolemmal ionic transporters but in a manner opposite to pH$_i$ (Leem et al., 1999; Wu & Vaughan-Jones, 1997). The activity of all four sarcolemmal transporters working in concert determines steady-state pH$_i$. Additionally, a reversible monocarboxylate transporter (MCT) which co-transports H$^+$ with anions such as lactate also participates in pH$_i$ regulation under post-ischaemic or hypoxic conditions when lactic acid production is raised (Halestrap et al., 1997; Vandenberg et al., 1993) (Figure 1).

Figure 1. Control of pH$_i$ in mammalian ventricular myocytes. pH$_i$ is mainly regulated by four sarcolemmal transporters. There are two acid-equivalent extruders, Na$^+$ / H$^+$ exchange (NHE) and Na$^+$ - HCO$_3^-$ cotransporter (NBC), and two acid-equivalent loaders Cl$^-$/HCO$_3^-$ exchange (anion exchange or AE) and Cl$^-$ - OH$^-$ exchange (CHE) (Leem et al., 1999). A reversible lactic acid transporter (Monocarboxylate transporter; MCT) may also be involved in acid extrusion under hypoxic/ischaemic conditions.
The contribution of each of the four main sarcolemmal transporters to transmembrane H⁺-equivalent flux is illustrated in Figure 2. The central coloured region represents a permissive pHᵢ range within which small pHᵢ displacements are tolerated, at least transiently. The low transporter fluxes imply that small acid/base loads or small shifts in the pHᵢ sensitivity of an individual acid/base transporter will relatively easily produce displacements of pHᵢ. Such an arrangement could provide a control system that permits some forms of pHᵢ signalling in the cardiac cell while still, in the longer term, overseeing pHᵢ regulation. Outside these limits, net acid-equivalent flux activates steeply, thus safeguarding the cell from extreme acidosis or alkalosis.

Figure 2. H⁺-equivalent fluxes in mammalian cardiac myocytes. Fluxes calculated for NHE, NBC, AE and CHE plotted as a function of pHᵢ, obtained from Leem et al. 1999. Near to resting pHᵢ (6.9-7.2; pink) flux rates are low and give rise to a “permissive range” where small deviations of pHᵢ are countered by only a small transmembrane H⁺-flux (modified from Vaughan-Jones et al. 2006).
NHE and NBC are the main acid extrusion mechanisms in cardiac myocytes. In the present Thesis, the modulation of the activity of these transporters by the enzyme carbonic anhydrase is investigated. Thus, a more detailed description of their function, structure and regulation is given in the following section.

1.2.1 Na+/H+ Exchange (NHE)

The transmembrane exchange of protons for Na⁺ is ubiquitous in organisms across all phyla and kingdoms, and underlies fundamental homeostatic mechanisms to control these ions (Brett et al., 2005). The mammalian NHE is an integral membrane protein that mediates the electroneutral exchange of one intracellular proton for one extracellular Na⁺ ion. NHEs are classified as secondary active transporters since the driving force for catalysis is not coupled directly to ATP hydrolysis, but instead is derived from the inwardly-directed Na⁺ electrochemical gradient established by the Na⁺/K⁺-ATPase pump (Orlowski & Grinstein, 2004; Wakabayashi et al., 1997).

1.2.1.1 NHE isoforms in mammals

To date, nine mammalian NHE isoforms (NHE1 – NHE9) have been identified (Nakamura et al., 2005; Orlowski & Grinstein, 2004; Orlowski & Grinstein, 1997). The isoforms share 25–70% amino acid identity, with calculated relative molecular masses ranging from approximately 74 to 93 kDa (Khadilkar et al., 2001; Orlowski & Grinstein, 2004; Orlowski & Grinstein, 1997).

The NHE1 isoform is the ‘housekeeping’ isoform of the exchanger and is expressed in the plasma membrane of virtually all tissues (Orlowski & Grinstein, 2004; Orlowski & Grinstein, 1997; Putney et al., 2002). NHE1 plays a central role in the
regulation of pH_i and cellular volume (Counillon & Pouyssegur, 2000; Orlowski & Grinstein, 2004; Orlowski & Grinstein, 1997; Putney et al., 2002), and it is the dominant isoform in the mammalian myocardium and the only expressed at the sarcolemma (Karmazyn et al., 1999; Orlowski & Grinstein, 1997).

Similarly to NHE1, NHE2 – NHE5 isoforms also localize to the plasma membrane, but have more restricted tissue distributions. NHE2 and NHE3 are predominantly located in the apical membrane of epithelia and are highly expressed in kidney and intestine (Noel et al., 1996; Orlowski & Grinstein, 2004; Orlowski et al., 1992). NHE4 is most abundant in stomach, but is also expressed in intestine, kidney, brain, uterus and skeletal muscle (Orlowski et al., 1992). NHE5 is expressed predominantly in brain, but may also be present at low levels in other non-epithelial tissues, including spleen, testis and skeletal muscle (Attaphitaya et al., 1999; Baird et al., 1999). The isoforms NHE6-NHE9 are ubiquitously expressed and are present in intracellular compartments and are presumed to regulate luminal pH and cation concentration (Nakamura et al., 2005). NHE6 expression is highest in heart, brain and skeletal muscle and is localized to early recycling endosomes (Brett et al., 2002; Nakamura et al., 2005). The NHE7 isoform is localized predominantly to the trans-Golgi network, and differs from the other NHE isoforms in that it mediates the influx of either Na^+ or K^+ in exchange for H^+ (Numata & Orlowski, 2001). The highest levels of NHE8 expression are found in skeletal muscle and kidney, and this isoform is mainly localized to the mid- to trans-Golgi compartments (Nakamura et al., 2005). The recently identified NHE-9 isoform is localized to late recycling endosomes (Nakamura et al., 2005).
1.2.1.2. NHE Structure and Membrane Topology

The structure of NHE1 is one of the best characterized within the NHE family. The protein is 815 amino acids in length, comprising the membrane domain and the cytoplasmic tail (Putney et al., 2002). The membrane domain of NHE1 is both necessary and sufficient for ion transport, whereas the cytosolic domain is involved in regulation of the activity of the exchanger (Fliegel & Frohlich, 1993; Wakabayashi et al., 1992). Prediction of the membrane topology of the NHE family suggests a similar arrangement for all isoforms with an N-terminal membrane domain consisting of twelve membrane-spanning segments and a more divergent C-terminal cytoplasmic tail (Orlowski & Grinstein, 2004) (Figure 3).

Figure 3. Membrane topology of NHE1. The NHE1 molecule comprises 12 membrane-spanning, a short N-terminal cytoplasmic domain and a large C-terminal cytoplasmic domain which contains regulatory sites. C-terminal sites for interaction with several signalling molecules are shown, including calmodulin (CaM), calcineurin homologous protein (CHP), PIP2 and carbonic anhydrase (CA) II binding sites. Phosphorylation sites are shown in yellow. Kinases that up-regulate NHE activity include CamKII, ERK1/2, p90 ribosomal kinase, the Rho-associated kinase p160ROCK, and Nck-interacting kinase, NIK. P38 MAPK inhibits NHE1 activity in response to angiotensin II via inhibition of ERK1/2. Protein kinases C and D are also able to regulate the exchanger (Reproduced from Slepkov et al. 2007).
1.2.1.3. NHE Activity and Regulation

Ion flux via NHE is driven by the transmembrane Na⁺ gradient and requires no direct metabolic energy input. The exchanger mediates the electroneutral extrusion of H⁺ in exchange for Na⁺ influx with 1:1 stoichiometry. NHE1 exhibits Michaelis–Menten dependence on extracellular Na⁺, with a reported apparent K_m of 3–50 mM (Levine et al., 1993; Orlowski, 1993). In contrast with the simple Michaelis–Menten dependence on extracellular Na⁺, intracellular acidification allosterically increases the activity of NHE.

NHE activity is primarily controlled by pH$_i$. NHE is minimally active at resting pH$_i$ but it is steeply activated upon an increase in [H⁺]$_i$. The regulation of NHE by H⁺-ions appears to be mediated by allosteric control. H⁺-ions bind to an intracellular modifier site distinct from the intracellular H⁺-ion transporter site, displaying cooperative behaviour with a Hill coefficient of 1.5-2.0 (Aronson, 1985). NHE activity is also sensitive to pH$_o$ since extracellular acidosis inhibits Na⁺-binding and transport rate (Aronson et al., 1983; Wu & Vaughan-Jones, 1997). A rise in intracellular Na⁺ can also inhibit NHE activity, due to a decrease in the thermodynamic driving force (Green et al., 1988; Grinstein et al., 1984; Grinstein & Furuya, 1986), yet fluctuations in intracellular Na⁺ within the physiological range have been shown to have no significant effect (Wu & Vaughan-Jones, 1997).

NHE1 is also modulated by phosphorylation at its cytosolic C-terminus, which increases the sensitivity of the H⁺ modifier site and therefore increases NHE activity. All phosphorylation sites of NHE1 are located in the cytoplasmic tail (Wakabayashi et al., 1994; Wakabayashi et al., 1992). The phosphorylation cascade includes phosphoinositide hydrolysis and subsequent activation of protein kinase C (PKC), via activation of the
mitogen activated protein (MAP) kinase pathway. Many external stimuli, including endothelin-1 (Khandoudi et al., 1994), angiotensin II (Matsui et al., 1995), α₁-adrenergic agonists (Lagadic-Gossmann & Vaughan-Jones, 1993; Wallert & Frohlich, 1992), thrombin (Yasutake et al., 1996), and growth factors (Rosoff et al., 1984), affect NHE activity via phosphorylation cascades.

In addition, there are factors which regulate NHE₁ via phosphorylation-independent mechanisms. ATP depletion has been shown to inhibit NHE activity (Goss et al., 1994). It is thought that this may be mediated by an unidentified co-factor which can only interact with NHE₁ when ATP levels are above a threshold level (Aharonovitz et al., 1999; Wu & Vaughan-Jones, 1994). Cell volume and osmotic changes can affect NHE-1 independently of phosphorylation (Grinstein et al., 1992). A regulatory site located close to the N-terminal domain has been postulated to mediate the effect of cell volume changes (Bianchini et al., 1997). Intracellular Ca²⁺ bound to calmodulin also regulates NHE₁. Calmodulin sites have been identified on the C-terminal domain of NHE₁ (Bertrand et al., 1994). Occupation of these sites is thought to reverse the autoinhibitory state (Bertrand et al., 1994; Wakabayashi et al., 1994). Recently, the enzyme carbonic anhydrase (CA) II has been shown to bind and influence NHE₁ transport efficiency through a direct interaction with a cluster of acidic residues at the C-terminus of the NHE₁ protein (Li et al., 2002).

1.2.1.4. NHE Pharmacological Inhibition

The first class of NHE inhibitors developed included amiloride and its 5’ alkyl-substituted derivatives such as 5-(N-Ethyl-N-isopropyl)amiloride (EIPA), 5-(N,N-dimethyl)amiloride (DMA), and 5-N-(methylpropyl)amiloride (MPA). First synthesised
in 1965 (Bickling et al., 1965), amiloride was developed as a K⁺-sparing diuretic due to its ability to inhibit both the epithelial Na⁺ conductive ion channel (ENaC) and NHE in the kidney. In the case of NHE, amiloride is believed to competitively inhibit close to or at the extracellular Na⁺ binding site (Counillon et al., 1993; Kinsella & Aronson, 1981). Wakabayashi et al (2000) demonstrated that amino acid residues in transmembrane domains 4 and 9 were important for amiloride binding. Amiloride and related compounds have been used clinically, to treat hypertension and congestive heart failure (Antcliff et al., 1971; Ramsay et al., 1980). These agents, however, are relatively non-specific protein inhibitors, affecting also Na⁺/K⁺-ATPase (Soltoff and Mandel, 1983), protein kinase C (Besterman et al., 1985), Na⁺/Ca²⁺ exchange (Kaczorowski et al., 1985), and voltage-gated Ca²⁺ current (Takahashi et al., 1989). Amiloride has also been shown to increase significantly action potential duration, possibly by inhibiting K⁺ currents (Marchese et al., 1984).

A second class of NHE inhibitors, more recently developed, comprises benzoylguanidines and their derivatives, for example HOE 694 (Counillon et al., 1993) and HOE 642 (cariporide) (Scholz et al., 1995; Scholz et al., 1999). Such compounds display a ~10³-10⁵-fold higher specificity for NHE1 than NHE3, compared to amiloride compounds which only have a 10²-fold higher specificity for NHE1. Due to this greater specificity for the NHE1 isoform and the fact that they do not appear to inhibit other ion transporters (Scholz et al., 1995; Scholz et al., 1993) or other pH regulatory systems (Loh et al., 1996), compounds such as HOE 694, cariporide (HOE 642) and the more recently developed quinoleine, zoniporide (Guzman-Perez et al., 2001; Knight et al., 2001) have become valuable experimental tools for cardiac pH research. They are also
being developed clinically as treatments for NHE1-mediated ischaemia/reperfusion injury. These compounds exhibit powerful cardioprotective properties in animal models of myocardial ischaemia/reperfusion (Clements-Jewery et al., 2004; Scholz et al., 1993) and may even attenuate or reverse features of myocardial hypertrophy (Yoshida & Karmazyn, 2000), although their therapeutic potential in a clinical setting has so far proved inconclusive (for review, see Avkiran & Marber, 2002). The functional effects of these drugs are proposed to be related to their influence on cardiac pH, \([Na^+]_i\) and \([Ca^{2+}]_i\).

1.2.2. Na\(^+\)-HCO\(_3\)\(^-\) Co-transport (NBC)

Bicarbonate transporters are major pH\(_i\) regulation systems in animal cells and play vital roles in acid-base movement in a number of mammalian organs, including, pancreas (Abuladze et al., 1998; Marino et al., 1999), kidney (Abuladze et al., 2000; Schmitt et al., 1999; Wang et al., 2001), reproductive system (Jensen et al., 1999), central nervous system (Bevensee et al., 2000; Brune et al., 1994; Schmitt et al., 2000), and heart (Choi et al., 1999; Dart & Vaughan-Jones, 1992; Yamamoto et al., 2005). Na\(^+\)-HCO\(_3\)\(^-\) co-transport (NBC) was first described in salamander (Ambystoma tigrinum) renal proximal tubule (Boron & Boulpaep, 1983). This transporter was also the first NBC to be cloned (Romero et al., 1997) followed by subsequent clones obtained from human kidney (Abuladze et al., 1998), rat kidney (Abuladze et al., 1998; Sciortino & Romero, 1999), human retina (Ishibashi et al., 1998), human pancreas (Abuladze et al., 1998), human heart (Choi et al., 1999), human skeletal muscle (Pushkin et al., 1999a), rat aorta and pulmonary artery, and brain (Bevensee et al., 2000). NBC has also been described in invertebrate species (Deitmer, 1991; Deitmer & Schlué, 1989; Piermarini et al., 2007a).
NBC transporters mediate the co-transport of Na^+ and HCO_3^- ions (or CO_3^{2-}) using the driving force derived from the inwardly-directed transmembrane Na^+ gradient.

Depending on the flux of the net charge per transport cycle, these transporters are characterised as electroneutral, when the transported negative charge equals the transported positive charge; or electrogenic, when the transported negative charge exceeds the transported positive charge.

1.2.2.1. NBC isoforms in mammals

To date, three NBC isoforms, two electrogenic and one electroneutral, have been identified. NBC1 corresponds to the original electrogenic isoform discovered and cloned from salamander (Boron & Boulpaep, 1983; Romero *et al.*, 1997). NBC1 is also termed NBCe1 or SLC4A4 according to the new nomenclature based on membership of the solute carrier (SLC) family.

In humans, two major NBC1 variants, NBCe1-A (kNBC; first cloned from kidney) and NBCe1-B (pNBC; first cloned from pancreas and heart) are expressed (Abuladze *et al.*, 1998; Burnham *et al.*, 1997; Choi *et al.*, 1999). These transporters are differentially expressed in a cell-specific manner (Abuladze *et al.*, 1998). NBCe1-mediated transport can work with a stochiometry of $1\text{Na}^+:2\text{HCO}_3^-$ or $1\text{Na}^+:3\text{HCO}_3^-$.

NBCe2 (NBC4 or SLC4A5) was originally cloned from a human cardiac cDNA library (Pushkin *et al.*, 2000a). NBCe2 refers to the splice variant NBCe2-C. This transporter also works with a stochiometry of $1\text{Na}^+:2\text{HCO}_3^-$ or $1\text{Na}^+:3\text{HCO}_3^-$.

NBCn1 (NBC3 or SLC4A7), the electroneutral NBC, was originally cloned from human skeletal muscle (Pushkin *et al.*, 1999a). Later, the rat ortholog of the transporter was cloned from rat aorta (Choi *et al.*, 2000b). NBC3 protein is expressed in kidney
(Kwon et al., 2000; Odgaard et al., 2004; Praetorius et al., 2004a; Pushkin et al., 1999b; Vorum et al., 2000), epididymis (Pushkin et al., 2000b), duodenum (Praetorius et al., 2001), choroids plexus (Praetorius et al., 2004b) and submandibular glands (Gresz et al., 2002; Luo et al., 2001).

In the heart, these three NBC isoforms have been detected at mRNA transcript and protein level (Choi et al., 2000b; Choi et al., 1999; Pushkin et al., 1999a; Virkki et al., 2002). There is clear evidence for the functional activity of electrogenic NBC in mammalian ventricular tissue with stochiometry of 1\(\text{Na}^+\):2\(\text{HCO}_3^-\) (Aiello et al., 1998; Yamamoto et al., 2005, Yamamoto et al., 2007), while a recent report also suggests functional activity from an electroneutral NBC (Yamamoto et al., 2005).

1.2.2.2. NBC Structure and Membrane Topology

\(\text{Na}^+\)-\(\text{HCO}_3^-\) co-transporters belong to the SLC4 family of \(\text{H}^+\)-equivalent transporters. Comparison of the primary structures of SLC4 transporters shows significant homology especially in putative membrane domains. To date, only the membrane topology of NBCe1 has been described (Tatishchev et al., 2003). NBCe1 is 1035 amino acids in length and contains 10 transmembrane domains with cytoplasmic localization of the N-terminal and C-terminal hydrophilic domains (Figure 4).
1.2.2.3. NBC Activity and Regulation

Similarly to NHE, NBC is also regulated by pH_i. Lagadic-Gossmann et al (1992) demonstrated that in guinea-pig ventricular myocytes NBC displays a similar pH_i dependency to NHE, activity increasing steeply as pH_i falls below 7.1 mediating approximately 40% of the total acid-equivalent efflux when pH_i was decreased from 7.15 to 6.95. Leem et al (1999) reported that, while NHE and NBC are equally stimulated by modest acid loads, greater activation of NHE occurs below a pH_i of 6.9. Below this pH_i, NBC is not activated to the same extent and the relationship between pH_i and NBC activity is approximately linear. A similar study on sheep Purkinje fibres revealed that
NBC accounts for 30% of total acid efflux at pH$_i$ of 7.0 but only 20% at pH$_i$ of 6.6 (Dart & Vaughan-Jones, 1992). NBC, like NHE, is inhibited by a fall in pH$_o$ and this is thought to be mediated by extracellular H$^+$-ion (H$^+$) titration of an allosteric regulator site, since inhibition is largely independent of extracellular HCO$_3^-$ (Ch’en & Vaughan-Jones, 2001).

NBC activity is also influenced by the concentration of Na$^+$ and HCO$_3^-$: Rat renal electrogenic NBC (rkNBC; NBCe1) displayed a K$_m$ for extracellular Na$^+$ of 30mM at every test voltage (between -160mV and +60mV) when expressed in in Xenopus oocytes (Sciortino & Romero, 1999). The HCO$_3^-$ dependency of NBC has also been explored yet whether the chemical form transported is HCO$_3^-$, CO$_3^{2-}$ or NaCO$_3^-$ is yet to be fully established due to the interdependent reactions between H$^+$, CO$_2$ and HCO$_3^-$. Apparent affinity constants for HCO$_3^-$ of 7-15mM have been reported in rabbit kidney cortical basolateral vesicles (Akiba et al., 1986; Stim et al., 1994). More recently, Boron and colleagues (Grichtchenko et al., 2000) expressed both, the salamander and the rat renal NBCs in Xenopus oocytes and showed an apparent K$_m$ for HCO$_3^-$, based on changes in membrane potential, of 10.6mM and 10.8mM, respectively. However, under voltage clamp conditions the K$_m$ for HCO$_3^-$ of the rat renal NBC was found to be 6.5 mM.

Regulation of NBC activity can also be mediated by phosphorylation of specific sites on the cytoplasmic C-terminal domain. A protein kinase A (PKA) phosphorylation site has been identified which is conserved in salamander, rat and human kidney clones. Tyrosine, PKC and casein kinase II phosphorylation sites have also been identified (Romero & Boron, 1999). Many external factors that acutely up or down regulate NBC activity via sarcolemmal receptors are upstream of these phosphorylation cascades. Up-regulating stimuli include PKC, angiotensin II, endothelin I, cholinergic, and β-
adrenergic stimulants (Eiam-Ong et al., 1992; Lagadic-Gossmann & Vaughan-Jones, 1993; Ruiz et al., 1997; Ruiz et al., 1995; Ruiz et al., 1996b). On the other side, down-regulating factors include PKA, calmodulin, and parathyroid hormone (Ruiz & Arruda, 1992; Ruiz et al., 1996a). Cardiac NBC has also been shown to be activated by the MAPK-(ERK)-dependent pathway and arachidonic acid (Baetz et al., 2002; Kohout & Rogers, 1995). Additionally, NBC regulation may also occur via the N-linked glycosylation sites. Also, chronic up-regulation of NBC can occur during metabolic acidosis and potassium depletion, while metabolic alkalosis can result in chronic down regulation (Akiba et al., 1987; Alpern, 1990; Soleimani et al., 1990; Soleimani et al., 1991).

CA has been proposed to be another factor that modulates NBC activity. By physically and functionally interacting with NBC at intracellular and extracellular sites, CA has been shown to enhance NBC-mediated HCO₃⁻ transport when these proteins are co-expressed in heterologous transfection systems. The electrogenic and electroneutral NBC isoforms NBCel-A, NBCel-B, and NBCn1-A display a binding site for CA II in their C-terminus (Alvarez et al., 2003; Gross et al., 2002; Loiselle et al., 2003; Loiselle et al., 2004; Pushkin et al., 2004). NBCel-B has been proposed to also interact with CA IV at its fourth extracellular loop, but it is possible that additional portions of the NBCel-B extracellular surface are also involved in the CA IV interaction (Alvarez et al., 2003).
1.2.2.4. NBC Pharmacological Inhibition

Disulphonic stilbene compounds such as 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) are effective inhibitors of NBC in the majority of cell types and have been used to identify the transporter in many studies (Cabantchik & Greger, 1992). Stilbenes however, are not specific since they also inhibit AE and MCT (Leem & Vaughan-Jones, 1998b; Wang et al., 1996). The stilbene disulphonate DBDS (4,4'-dibenzamidostilbene-2,2'-disulphonate) has also been shown to inhibit CHE (Sun et al., 1996). More recently a putative specific inhibitor for NBC has been developed, S0859 (C\textsubscript{29}H\textsubscript{24}CIN\textsubscript{3}O\textsubscript{3}S; Sanofi-Aventis), which has been shown to inhibit cardiac NBC with an apparent K\textsubscript{i} of 3.57\,\mu\text{M}, while having no effect on the other acid-equivalent transporters (Ch'en et al., 2008). This NBC inhibitor has been successfully used to block NBC activity in cardiac (Yamamoto et al., 2005) and epithelial (Schwab et al., 2005) tissues.

1.3. Intracellular Buffering

Buffering represents the first line of defence of pH\textsubscript{i} when an intracellular acid or alkali load occurs. Over a rapid time course, buffers can bind or release a significant amount of H+, thus minimising pH\textsubscript{i} fluctuations. The ability of a buffer to minimise a pH disturbance is described quantitatively by its buffering capacity. Intracellular buffering capacity (\(\beta_i\)) is defined as the amount of acid or base (in mmoles) that can be added to one litre of cytoplasm to change pH\textsubscript{i} by one pH unit (Roos & Boron, 1981):

\[
\beta_i \text{ (mM)} = \frac{\Delta[H^+]_i}{\Delta\text{pH}_i}
\]
Total intracellular buffering power (β_{tot}) comprises both intrinsic, CO$_2$-independent buffering (β_{int}) and CO$_2$-dependent buffering (β_{CO2}). β_i consist of H$^+$/OH$^-$-titratable groups on intracellular proteins and dipeptides, as well as titratable groups on other smaller molecules (Vaughan-Jones et al., 2002; Zaniboni et al., 2003). β_{int} has a fixed (β_{fix}) and mobile (β_{mob}) component. β_{fix} consist of imidazole groups and other H$^+$ titratable groups on cytoplasmic proteins. Macromolecules, such as proteins, are typically polyvalent and of high molecular weight, and therefore have low intracellular mobility, being effectively anchored within the cell, at least on a time scale of minutes. β_{mob}, in contrast, consists of smaller non-protein buffers such as taurine, inorganic phosphate, lactate, various amino acids and several derivatives of the histidine-based dipeptides carnosine, anserine and homocarnosine (Vaughan-Jones et al., 2002). These relatively low molecular weight buffers (100–200 Da) diffuse two or three orders of magnitude faster than large proteins, and can reversibly bind and shuttle H$^+$-ions spatially within the cell. Spatial movement of H$^+$ is particularly important because it couples cytoplasmic pH$_i$ to sarcolemmal regulatory transporters resulting in efficient pH$_i$ control (Vaughan-Jones et al., 2006).

Because the capacity of a cellular buffer is defined in part by its pK, cytoplasmic buffering power will vary as a function of pH$_i$. In mammalian cardiac myocytes, β_{int} increases with falling pH$_i$ (within the physiological range) and varies in a manner consistent with at least two buffer populations (Figure 5), which are assumed to be the fixed and mobile buffer species (Leem et al., 1999; Zaniboni et al., 2003).
The pH-dependence of β_{int} is given by the following relationship:

$$\beta_{\text{int}} = \frac{\ln_{10} \times C_{\text{fix}} \times 10^{pH-pK_{\text{fix}}}}{(1 + 10^{pH-pK_{\text{fix}}})^2} + \frac{\ln_{10} \times C_{\text{mob}} \times 10^{pH-pK_{\text{mob}}}}{(1 + 10^{pH-pK_{\text{mob}}})^2}$$

where C_{fix} and C_{mob} are the total concentrations of fixed and mobile buffers, respectively.

The fixed buffer population is assumed to be one relatively homogeneous of high concentration (~70mM) and a low average pK (~6.1). This pK value would be consistent with imidazole groups on histidine residues and, due to their effective concentration; these would most likely be components of intracellular proteins.

Figure 5. pH$_i$-dependence of intrinsic buffering capacity. Intrinsic buffering capacity (β_{int}; black) comprises two populations of buffers which represent the fixed (β_{fix}; red) and the mobile (β_{mob}; light blue) components. β_{fix} consist of imidazole groups and other H$^+$ titratable groups on high molecular weight and low intracellular mobility molecules such as cytoplasmic proteins. β_{mob} consists of smaller non-protein low molecular weight and higher intracellular mobility buffers such as the histidine-based dipeptides carnosine, anserine and homocarnosine (from Zaniboni et al. 2003).
On the other hand, the mobile component has been determined to be one of lower concentration (~13mM) and an average pKₐ of 7.30-7.48 (Leem et al., 1999; Swietach & Vaughan-Jones, 2005; Vaughan-Jones et al., 2002; Vaughan-Jones et al., 2006; Zaniboni et al., 2003) (Figure 6).

![Facilitated spatial diffusion of protons.](image)

Figure 6. Facilitated spatial diffusion of protons. Low molecular weight buffers (B) mediate the spatial diffusion of H⁺-ions within the cytoplasm. Mobile buffers shuttle protons from acidic regions to regions of higher pH.

The second component of J₃tot, Pco₂, relies on the CO₂/HCO₃⁻ buffer system or carbonic buffer. Buffering occurs via the reversible protonation of bicarbonate anions leading to the formation of carbonic acid which instantly dissociates into CO₂ and H₂O:

\[
\text{H}^+ + \text{HCO}_3^- \leftrightarrow \text{H}_2\text{CO}_3 \leftrightarrow \text{CO}_2 + \text{H}_2\text{O}
\]

Intracellular buffering due to CO₂ is defined by the following expression, derived from a rearrangement of the Henderson-Hasselbach equation:
\[\beta_{CO_2} = 2.303 \times [HCO_3^-]_i = 2.303 \times [HCO_3^-]_o \times 10^{(pH_i-pH_0)} \]

In order for the \(\beta_{CO_2} \) expression to be valid, \(CO_2/HCO_3^- \) must be at equilibrium and the calculation of \([HCO_3^-]_o\) from the Henderson-Hasselbach equation should use an appropriate \(pK_a \) value taking into account the temperature and the effect of saturated water vapour pressure on the \(pK_a \) of \(CO_2/HCO_3^- \) (6.15 at 37°C) (Leem & Vaughan-Jones, 1998a).

In contrast to \(\beta_{int} \), the equilibrium value of \(\beta_{CO_2} \) rises with rising \(pH_i \) for a fixed value of \(pH_0 \). The relative importance and contribution of \(\beta_{int} \) and \(\beta_{CO_2} \) to \(\beta_{tot} \) therefore depends on \(pH_i \) (Figure 7).

Figure 7. pH-dependence of total buffering capacity (\(\beta_{tot} \)), intrinsic buffering (\(\beta_{int} \)), and \(CO_2 \)-dependent buffering capacity (\(\beta_{CO_2} \)) in mammalian ventricular myocytes. \(\beta_{tot} \) includes the intrinsic and \(CO_2 \)-dependent buffering components. At a resting \(pH_i \) of 7.2, \(\beta_{CO_2} \) represents approximately 40% of \(\beta_{tot} \) (reproduced from Leem et al. 1999).
Efficient buffering of H\(^+\) by HCO\(_3^-\) ions requires rapid equilibration with CO\(_2\) in solution. Without catalysis however, the equilibration of carbonic buffer occurs slowly. In unbuffered solutions the spontaneous CO\(_2\) hydration reaction has a half-time of about 5 seconds (Forster, 1991). In a cell containing intrinsic buffers, however, carbonic buffer equilibration can take several minutes (Leem & Vaughan-Jones, 1998a). Cells express the enzyme carbonic anhydrase (CA) which is responsible for accelerating the equilibration of carbonic buffer ensuring adequate and rapid provision of HCO\(_3^-\) to buffer H\(^+\)-ions. At the concentration found inside erythrocytes, CA can accelerate the uncatalysed hydration reaction rate by 17000-fold at 37°C (Itada & Forster, 1977). In cardiac myocytes, CA has been shown to accelerate intracellular CO\(_2\) hydration at a more modest level (~3-fold) (Lagadic-Gossmann et al., 1992; Leem & Vaughan-Jones, 1998a).

Similarly to intrinsic mobile buffers, carbonic buffer can also shuttle protons within the cytoplasm and contribute to pH\(_i\) control. The mechanism by which this “carbonic shuttle” facilitates proton mobility relies on diffusion and hydration of intracellular CO\(_2\), leading to the formation of H\(^+\) and HCO\(_3^-\) in regions distal to the local acid load, with back diffusion of HCO\(_3^-\) to neutralize some of the original acid load. The shuttle thus effectively mediates a passive spread of intracellular H\(^+\)-ions from proximal to distal regions within the cell. CA plays a key role in this mechanism. Because efficient function of the shuttle relies on the rapid equilibration between the carbonic buffer components, CA is required for maximal turnover of the shuttle (Figure 8).
1.4. Carbonic Anhydrase

Carbonic anhydrase (CA; EC. 4.2.1.1) was first characterised from erythrocytes in 1933 directly as a result of a search for a catalytic factor that had been theoretically determined as necessary for rapid transit of HCO$_3^-$ from the erythrocyte to the pulmonary capillary (Meldrum & Roughton, 1933). CAs are ubiquitous zinc metalloenzymes that catalyze the reversible hydration of CO$_2$ to form bicarbonate and H$^+$. These enzymes are present across the phylogenetic tree and are encoded by four distinct evolutionary unrelated gene families: α, β, γ and δ (Hewett-Emmett, 2000; Tripp et al., 2001). The α-CAs are present in vertebrates, bacteria, algae and in the cytoplasm of plants, both mono- and dicotyledons. β-CAs are found predominantly in bacteria, algae and chloroplasts. The γ-CAs are present mainly in archaea and in some bacteria, and δ-CAs are found in some marine diatoms (Roberts et al., 1997; Tripp et al., 2001). There are no significant
homologies between representatives of the different CA families. Thus, this seems to be a good example of convergent evolution of catalytic function.

In mammals, 16 different α-CA isoforms of varying activity, tissue specificity, physiological role and sensitivity to pharmacological inhibitors have been reported (Chegwidden & Carter, 2000; Parkkila, 2000). Among them, the most studied are isozymes CA I, CA II, CA III, CA IV and CA IX; thus, most of the data available correspond to these isoforms. α-CAs can be classified into four broad groups:

(i) Cytosolic CAs. This group includes the cytosolic isozymes CA I, CA II, CA III, CA VII, and CA XIII. Among cytosolic CAs, CA II appears to have the most widespread distribution in mammalian tissues and is one of the fastest enzymes known with a K_{cat} of 1.4×10^6 s$^{-1}$ and a K_m for CO$_2$ of ~10mM ($K_{\text{cat}} = \text{Vmax/total enzyme concentration}$). CA VII is the most highly conserved of the α-CA isozymes. This isoform also has a high catalytic activity, almost in the order of 10^6 s$^{-1}$, and is seemingly widely distributed, albeit at low concentrations. CA I and CA III seem to have a more restricted distribution pattern, and their K_{cat} values are in the order of 10^5 s$^{-1}$ and 10^4 s$^{-1}$, respectively.

(ii) Membrane-bound CAs. Membrane-bound isozymes include CA IV, CA IX, CA XII, CA XIV and XV. Of these, three (IX, XII and XIV) are transmembrane proteins while two (IV and XV) are bound to membranes via a glycosylphosphatidylinositol (GPI) anchor. CA IV is a high activity isozyme ($K_{\text{cat}} 1.1 \times 10^6$ s$^{-1}$; K_m ~22mM) with a widespread distribution, especially in the capillary endothelium. CA IX and CA XII are bitopic (single-pass) transmembrane proteins and have been identified in many normal
tissues (Karthuma et al., 2000; Parkkila, 2000) and particularly overexpressed in several human carcinomas and tumour cell lines (Parkkila et al., 2000). Both proteins are hypoxia-inducible and are negatively regulated by the von Hippel-Lindau tumor-suppressor protein (Potter & Harris, 2004). Values of K_{cat} for CA IX and CA XII are in the order of 10^5 s$^{-1}$. CA XV is the latest membrane-bound CA isozyme to be described, and it is an exception to the other isozymes in the group in that it is the only with low catalytic activity.

(iii) **Mitochondrial CAs.** Two CA isozymes, CA VA and CA VB, have been identified in mitochondria. These unique mitochondrial isozymes are localized in the mitochondrial matrix and their catalytic activity is necessary in certain biosynthetic metabolic pathways (Chegwidden et al., 2000; Dodgson, 1987; Dodgson & Forster, 1986a; Dodgson et al., 1984; Forster et al., 1984). CA VA was the first CA isoform determined to have a function in intermediary metabolism. Compared to other CAs, CA V isozymes have moderate catalytic activities with K_{cat} values around 3×10^5 s$^{-1}$ (Chegwidden & Carter, 2000; Heck et al., 1994). CA VA and CA VB have a different tissue-specific distribution. Studies in mouse tissues have shown that CAVB has a widespread expression pattern while CA VA expression appears to be limited to liver, skeletal muscle and kidney mitochondria (Shah et al., 2000). The orthologue human genes of mouse CA V also show differences in tissue-specific expression (Fujikawa-Adachi et al., 1999).
(iv) Secreted CAs. CA VI is the only secreted CA isozyme identified to date. Immunohistochemical studies have demonstrated the presence of CA VI in the mammalian parotid and submandibular glands (Kadoya et al., 1987; Ogawa et al., 1992; Ogawa et al., 1993; Parkkila et al., 1990) from where it is secreted into saliva. More recent studies have also demonstrated the presence of CA VI in the mammary gland and its secretion in milk (Ichihara et al., 2003; Karhumaa et al., 2001; Nishita et al., 2007) and in the lower airways and lungs (Leinonen et al., 2004). CA VI was detected in the seromucous tracheobronchial glands and its secretion, the tracheobronchial surface epithelium, and the bronchiolar surface epithelium of rats. Also, CA VI was observed in acinar cells, in duct contents of the anterior gland of the nasal septum, and in the lateral nasal gland in mice (Kimoto et al., 2004). Immunoreactivity was also observed in the mucus covering the respiratory and olfactory mucosa and in the lumen of the nasolacrimal duct. The catalytic activity of CA VI is moderate compared to other CA isozymes. Its K_{cat} is about 7×10^4 s$^{-1}$ with a K_m for CO_2 of about 4mM (Chegwidden & Carter, 2000).

(v) CA-related proteins. Along with the rest of active CA isozymes, evolutionarily conserved but acatalytic members of the CA family have been reported, and designated as CA-related proteins (CA-RPs). In the CA numbering system (the order of discovery), three isoforms, CA-RPs VIII, X and XI, have been described. These three isoforms appear to lack activity because of histidine residue substitutions in the active site. These molecules have been tightly conserved during evolution, suggesting important functions.
The exact biological function of the CA-RPs however, has not yet been elucidated (Tashian et al., 2000).

1.4.1. General Structure of α-CAs

α-CAs generally are monomeric metalloenzymes with a molecular weight in the range of 26kDa to 58kDa. The X-ray crystal structures for seven α-CA isozymes (CA I, II, II, IV, V, XII and XIV) have been resolved and all show structural homology and conservation of active site motifs (Stams & Christianson, 2000; Whittington et al., 2004; Whittington et al., 2001). The CA catalytic domain of α-CAs is nearly spherical, and the dominant secondary structure is a 10-stranded, twisted β-sheet, which divides the molecule into two halves (Figure 9).

Figure 9. Structure of carbonic anhydrase. Consensus ribbon structure for the catalytic domain of α-carbonic anhydrases (reproduced from Chegwidden and Carter, 2000)
There are four important structural features of CAs within or interacting with the active site of the enzyme that are critical for catalysis: the Zn$^{2+}$ binding site, the Thr-199 loop, the substrate association pocket, and the proton shuttle.

The active site is located in a roughly cone-shaped cavity that reaches almost to the centre of the CA molecule. It consists of a Zn$^{2+}$ ion coordinated by three histidine residues (His-94, His-96 and His-119) and a hydroxyl ion (OH') in a roughly tetrahedral geometry. The zinc-bound OH' acts as a potent nucleophile and is crucial in the catalytic process. Histidine ligands play important structural and functional roles in maintaining the stabilization of the zinc binding site and the reactivity of the zinc-bound OH' for catalysis (Alexander et al., 1993; Christianson & Fierke, 1996; Ippolito & Christianson, 1994; Kiefer & Fierke, 1994). These three histidine direct ligands are positioned by hydrogen bonds to other groups in the protein forming a sphere of “indirect ligands” (Christianson & Alexander, 1989). Both, the direct and indirect ligands are mostly conserved in all sequenced α-CAs (Figure 10).

Thr-199 is contained within a loop which connects the two strands of the central β-sheet. The zinc-bound OH' interacts via a hydrogen bond with the hydroxyl side chain of Thr-199. This interaction is important because it orients the nucleophile for catalysis (Merz, 1990). Thr-199 in turn donates a hydrogen bond to the carboxylate side chain of Glu-106 (Hakansson et al., 1992; Liljas et al., 1972; Merz, 1990). In the absence of substrate, the zinc-bound OH- also establishes a hydrogen bond with a water molecule (“deep water”) which in turn forms another hydrogen bond with the amino group of Thr-199.
Figure 10. Structure of the active site of carbonic anhydrase. The Zn$^{2+}$ center is coordinated to three direct ligands, His-94, His-96 and His119. These in turn are stabilized by a "sphere" of indirect ligands, Gin-92, Glu-106 and Glu-117. Hydrogen bonds are indicated by dashed lines (reproduced from Coleman JE, 1998).

A hydrophobic pocket, which comprises amino acid residues Val-121, Val-143 and Leu-198, is located adjacent to the Zn$^{2+}$ ion and it is believed to serve as a pre-catalytic association site for substrate CO$_2$ (Krebs et al., 1993; Liljas et al., 1972; Lindskog, 1986). The hydrophobic pocket participates in desolvating the CO$_2$ molecule, thus enhancing its reactivity, and also in channeling the substrate toward the nucleophilic zinc-bound OH$^-$ (Liang & Lipscomb, 1990; Merz, 1991; Merz, 1990).

Another critical residue for catalysis in the CA molecule is the shuttle residue His-64, which is positioned between the zinc centre and the mouth of the active-site cavity. This residue facilitates an intramolecular proton transfer (proton shuttling) event.
that is critical for catalysis and constitutes the rate-limiting step for CO2 hydration (Tu et al., 1989).

1.4.2. Carbonic anhydrase activity and function

CAs catalyze the reversible hydration of CO2 with high efficiency and are remarkable in that they possess some of the highest measured turnover rates among enzymes (Khalifah, 1971). The efficient regulation of acid–base balance mediated by CAs appears to be extremely important in biological processes, since numerous isozymes catalyse the same fundamental reaction across species and in different organs, tissues and cell compartments (Chegwidden & Carter, 2000; Parkkila, 2000). \(\alpha\)-CAs can also catalyze a variety of other reactions, such as the hydrolysis of a range of ester substrates (Briganti et al., 1999; Pocker & Storm, 1968; Supuran et al., 2003). It is unclear however, whether the latter reactions are of physiological significance.

\(\alpha\)-CAs play important physiological and pathophysiological functions in mammals. They are involved in processes related to respiration and transport of \(\text{CO}_2/\text{HCO}_3^-\) between metabolizing tissues and lungs, pH and CO2 homeostasis, electrolyte secretion, biosynthetic reactions, bone resorption, calcification, tumorigenesis and many other physiological and pathophysiological processes (Chegwidden et al., 2000; Geers & Gros, 2000; Maren, 1967; Parkkila, 2000; Swietach et al., 2007b).

Probably the basic and most well known physiological role of CA is the regulation of acid-base homeostasis. CA isozymes I, II, and IV are normally involved in this process by participating in the interconversion and transport of \(\text{CO}_2\) and \(\text{HCO}_3^-\) between tissues and excretion sites such as lungs and kidneys. CA activity facilitates elimination of \(\text{CO}_2\) in capillaries and pulmonary microvasculature (Chegwidden &
Carter, 2000; Maren, 1967), and participates in the elimination of H⁺-ions in the renal tubules and collecting ducts, as well as the reabsorption of HCO₃⁻ in the brush border of the proximal convoluted tubule and thick ascending Henle loop in kidneys (Chegwidden & Carter, 2000; Parkkila, 2000; Sly & Hu, 1995). CAs are also involved in the secretion of electrolytes in many tissues and organs. In the eye, for example, CA II and CA IV, participate in the formation of the bicarbonate-rich, aqueous humor secretion. Malfunctioning of this process leads to high intraocular pressure and glaucoma. CA is also involved in the formation of CSF by providing HCO₃⁻ and regulating pH in the choroid plexus (Maren, 1967).

The process of formation of many gastrointestinal tract secretions also involves the participation of CA. These include the production of saliva in acinar and ductal cells, of gastric acid in the stomach parietal cells, of bile and pancreatic juice (Parkkila, 2000; Parkkila & Parkkila, 1996; Parkkila et al., 1994; Swenson, 1991). CAs also play an important role in ion and water transport in the intestines (Fleming et al., 1995; Swenson, 1991).

In the reproductive tract, CA is involved in the regulation of pH and HCO₃⁻ of the seminal fluid (Cohen et al., 1976; Goyal et al., 1980; Kaunisto et al., 1995; Kaunisto et al., 1990; Parkkila et al., 1993). CA is also involved in the development and function of bone by participating in differentiation of osteoclasts and providing H⁺-ions for bone resorption (Chegwidden & Carter, 2000; Silverton, 1991; Vaananen & Parvinen, 1991). Some isozymes are involved in molecular signalling and metabolic processes. CA V, for example, participates in insulin secretion signalling in pancreas β cells (Parkkila et al., 1998). CA II and CA V are involved in metabolic processes by providing HCO₃⁻ for
gluconeogenesis, fatty acids *de novo* biosynthesis, urea cycle, and pyrimidine base synthesis (Dodgson, 1991; Dodgson, 1987; Dodgson & Cherian, 1989; Dodgson & Forster, 1986a; Dodgson & Forster, 1986b; Dodgson et al., 1983; Dodgson et al., 1984; Dodgson et al., 1993). Finally, some isozymes such as CA IX, CA XII, are highly expressed in tumors and are involved in oncogenesis and tumor progression (Dorai et al., 2005; Hynninen et al., 2006; Leppilampi et al., 2003; Parkkila et al., 2000; Pastorek et al., 1994; Potter & Harris, 2004; Swietach et al., 2007b; Ulmasov et al., 2000).

Recently, a novel role for CA in acid-base homeostasis at the cellular level has been proposed. Based on evidence from heterologous transfection systems, CA has been proposed to interact functionally and physically with membrane pH$_i$ regulatory transporters enhancing their activity (Alvarez et al., 2003; Li et al., 2002; Sterling et al., 2002; Sterling et al., 2001; Vince et al., 2000; Vince & Reithmeier, 1998; Vince & Reithmeier, 2000). Reithmeier and colleagues (Vince et al., 2000; Vince & Reithmeier, 1998; Vince & Reithmeier, 2000) have shown that the C-terminus of AE1 binds CA II, and that the enzyme enhances the transport function of AE1, AE2 and AE3 when these proteins are expressed in cultured embryonic renal-derived HEK 293 cells (Sterling et al., 2001). These findings led to the proposal that the complex formed by AE and CA II functions as a bicarbonate transport metabolon (Sterling et al., 2001). In this model, the efficiency of bicarbonate transport is enhanced by the intracellular intermolecular shuttling of HCO$_3^-$ between CA II and AE (McMurtrie et al., 2004). On the extracellular side, CA IV has been shown to interact with an extracellular loop of the AE1 protein (Sterling et al., 2002). This arrangement would facilitate the conversion of transported HCO$_3^-$ ions into CO$_2$, thereby accelerating the rate of AE-mediated bicarbonate transport.
Recently, the physical and functional interaction of CA IX with AE1, AE2, and AE3 when coexpressed in HEK 293 cells has also been reported (Morgan et al., 2007).

The C-terminus of the electrogenic transporter kNBC (NBCe1-A or SLC4A4) has also shown to bind CA II \textit{in vitro} with high affinity (Gross et al., 2002), and that the complex formed by these two proteins when expressed in the mouse proximal tubule (mPCT) cell line, resulted in the enhancement of \(\text{HCO}_3^-\) transport (Pushkin et al., 2004). pNBC, the other electrogenic isoform of the transporter (NBCe1-B), has been reported to interact at intracellular and extracellular sites with CA II and CA IV, respectively, when these proteins are expressed in transfected HEK293 cells (Alvarez et al., 2003). The C-terminus of the electroneutral NBCn1 (NBC3 or SLC4A7) has also been shown to bind CA II with high affinity on \textit{in vitro} studies (Loiselle et al., 2003). These findings have been supported by results obtained in different expression system. A recent functional study in which NBCe1 was expressed in \textit{Xenopus} oocytes, showed that co-expressing or injecting CA II enhanced NBC activity, and that this effect can be abolished by pharmacological CA inhibition (Becker & Deitmer, 2007).

There are, however, studies that do not support the proposal of the bicarbonate transport metabolon, and that find no effect of CA on NBC activity (Lu et al., 2006; Piermarini et al., 2007b).

The formation of transport metabolons involving CA and membrane \(\text{H}^+\)-equivalent transporters seems not to be restricted to only members of the SLC4 family. Fliegel and colleagues (Li et al., 2002) have shown that CA II binds and intracellular motif in the C-terminus of the NHE1 protein, and enhances its transport rate when these proteins are heterologously expressed in a cultured cell line. These findings led to the
proposal that CA might facilitate NHE-mediated acid extrusion by providing H\(^+\)-ions (arising from the hydration of CO\(_2\)) for transport. Thus, it is possible that the functional interactions of CA and membrane H\(^+\)-equivalent transporters represent a widespread additional controller of pH\(_i\) regulatory mechanisms. It is noteworthy to mention that CA has been also proposed to interact with other membrane transporters such as MCT1 (Becker \textit{et al.}, 2005) and the glutamine transporter SNAT3 (Weise \textit{et al.}, 2007), and modulate their activity. There is, however, not yet evidence of a functional H\(^+\)-equivalent transport metabolon in intact wild-type cells.

1.4.3. Inhibitors of CA activity and their use in physiology and clinic

CA inhibitors have been very important in determining the physiological function of CA isozymes in organs, cells and organelles. Most CAs are strongly inhibited by aromatic and heterocyclic sulphonamides as well as by inorganic, metal complexing anions (Lindskog, 1997; Supuran \textit{et al.}, 2003).

Sulphonamides are powerful CA inhibitors and have been classically used in physiological studies and in the clinic. In 1940, sulphanilamide was the first sulphonamide described to act as a potent and specific inhibitor of CA activity (Mann & Keilin, 1940). This very simple monocyclic sulphonamide molecule afforded the development of a wide spectrum of sulphonamide pharmacological agents with a variety of biological actions, among others, the antibacterial agent sulfathiazole, the widely used diuretic furosemide, the hypoglycaemic agent glibenclamide, the anticancer sulphonamide indisulam, the aspartic HIV protease inhibitor amprenavir, and the potent CA inhibitor acetazolamide (ATZ).
At present, CA inhibitors are widely used clinically as antiglaucoma agents, diuretics and antiepileptics, and as agents for the management of acute mountain sickness, gastric and duodenal disorders, and osteoporosis (Supuran et al., 2003). Extensive research on structure-activity correlations has been carried out leading to the development of a wide range of specific sulphonamide and modified sulphonamide CA inhibitors aimed to target intracellular as well as extracellular CA isozymes (Supuran et al., 2004).

Two of the most well-known sulphonamide drugs, ATZ and ethoxyzolamide (ETZ), have been clinically used as systemic antiglaucoma agents. Systemic inhibitors are useful in reducing the elevated intraocular pressure characteristic to this disease, as they represent the most efficient physiological treatment for glaucoma. This is achieved by reducing the rate of HCO$_3^-$ and aqueous humour secretion due of the inhibition of CA II and IV. The systemic administration of these drugs however, results in the inhibition of various CA isozymes present in tissues other than the eye leading to a range of side effects (Maren, 1967; Supuran & Scozzafava, 2000). Topical administration of these drugs however, proved not to be effective. In order to avoid these complications, more recently, novel topically acting CA sulphonamides have been developed. The first such drug, dorzolamide, entered the clinic in 1995 (Sugrue, 2000) and the second one, brinzolamide, in 1999 (Silver, 2000). These two drugs showed much less side effects compared to the systemically administered ones, and inhibited all the physiologically relevant CA isozymes.

CA inhibitors have been also used in the treatment of neurological conditions. For decades, acetazolamide has been used to treat epilepsy (Reiss & Oles, 1996). Topimarate,
a sulphamate fructopyranose derivative, is currently used in the treatment of epileptic seizures in adults and children (Bialer et al., 1999; Lyseng-Williamson & Yang, 2007). Interestingly, topimarate shares with other sulphamate or sulphonamide derivatives the ability to act as a potent inhibitor of CA activity (Casini et al., 2003; Dodgson et al., 2000; Supuran & Scozzafava, 2000).

Acetazolamide has been also used for the treatment of Acute Mountain Sickness (AMS) (Leaf & Goldfarb, 2007) and also of High Altitude Cerebral Edema (HACE) secondary to AMS (Hackett & Roach, 2001). Recently the use of ATZ for the treatment of Chronic Mountain Sickness has been proposed (Richalet et al., 2005; Rivera-Ch et al., 2007).

Other drugs, not originally designed to target CA, can also act as inhibitors of the enzyme. Some of these compounds such as the non-steroidal anti-inflammatory drugs celecoxib and valdecoxib designed as cyclo-oxygenase-2 inhibitors or the antipsychotic sulpiride design as a postsynaptic dopamine (D2) receptor antagonist, have a sulphonamide group in their molecules and thus can act as CA inhibitors (Weber et al., 2004).

Recently, some non-sulphonamides have shown to inhibit CA activity suggesting that some chemical groups different from the classic sulphonamide or sulphonamide derivatives can affect CA activity (Iyer et al, 2006). CA inhibition by non-sulphonamide groups could be useful in the design of new drugs but also a potential problem to take into consideration when designing experimental protocols because of potential secondary effects (see Chapter 3).
In the present work, the functional relationship between intracellular and extracellular carbonic anhydrase activity and sarcolemmal H⁺-equivalent transport mediated by the acid extruders NHE and NBC was investigated in isolated cardiac myocytes as a model of a wild-type intact cellular system. Because the study of membrane transport mechanisms requires the use of selective pharmacological inhibitors, the effect of these on in vitro and intracellular carbonic anydrase activity was also investigated, and possible inhibition mechanisms and potential repercussions on H⁺-equivalent transport discussed. Some inhibition of sarcolemmal H⁺-transport by these drugs may be secondary to inhibition of CA. Finally, the pH-dependence of in vitro and intracellular CA activity was examined and its possible implications for sarcolemmal H⁺-equivalent transport also discussed.
CHAPTER 2

GENERAL METHODS

2.1. Ventricular Myocyte Isolation

Single ventricular myocytes were isolated from the hearts of Sprague-Dawley rats (~300-350g) stunned and killed by cervical dislocation according to UK Home Office regulations. Following rapid opening of the chest cavity, the aorta was sectioned and the heart was then quickly removed and placed into ice-cold (4-8°C) Solution A containing 16 IU/mL of heparin. After remaining connective tissue was removed, the heart was placed in a warmed water-jacketed chamber at 37°C and connected to a Langendorff system through a glass cannula inserted into the aorta and securely fastened with surgical thread.

In the Langendorff preparation, the heart is perfused in a retrograde direction down the aorta. This forces the aortic valves to shut and the perfusion fluid is directed into the coronary arteries thereby perfusing the entire ventricular mass of the heart, draining into the right atrium via the coronary sinus.

The cannula and all the tubing in the Langendorff system were pre-filled with Solution A plus 750µM CaCl₂ plus heparin (~4 IU/mL) before the heart was cannulated in order to avoid air-bubbles in the system. The heart could be perfused with three solutions maintained at 37°C in heated water-jacketed chambers of the Langendorff system. Three-way plastic valves were used to control the flow of the selected solution from one of the three chambers. The solutions were continuously bubbled with 100% O₂.
and were supplied to the heart by a peristaltic pump (Gilson, Minipulse 3) to ensure tight control of flow and pressure. Flow rate was maintained at 14.5 mL min\(^{-1}\). The perfusate flowed through a heating coil and bubble trap before reaching the heart to prevent bubbles from entering and blocking perfusion. A Hg-filled manometer was connected to the side-arm of the cannula for continuous monitoring of aortic pressure as a measure of the progress of digestion.

The heart was first perfused with Solution A plus 750\(\mu\)M CaCl\(_2\) and heparin until it had regained a regular and stable beat. At this point, the perfusate was changed to Ca\(^{2+}\)-free solution (Solution A plus 1 mM EGTA). Under these conditions, the heart beat decreased gradually until stopping completely. The time between switching solution and the heart beat stopping (ie. the time for the Ca\(^{2+}\)-free solution to reach the heart) was recorded (T ~80 secs). Two minutes after switching to Ca\(^{2+}\)-free solution, the manometer was opened so pressure, which gives an indication of coronary resistance, could be monitored. After three minutes, the perfusate was switched to enzyme solution which consisted of Solution A plus Liberase Blendzyme 3 (a mixture of collagenase I and II, and protease; 0.2 mg/mL; Roche Diagnostics, UK) for ~12 min. Pressure was recorded and was usually between 40 and 80 mmHg. Once the enzyme solution had reached the heart (time T plus 10 seconds), it was collected (after passing through the heart) by closing off the line to waste at the bottom of the chamber that surrounded the heart. The collected enzyme solution was immediately bubbled with 100% O\(_2\). When all the original enzyme solution had been used, the collected enzyme solution was recirculated. Pressure was recorded just after the beginning of recirculation and was, on average, 60 mmHg. Total time of perfusion with enzyme, including re-circulation, was 12 minutes.
After enzymic digestion, the heart was transferred from the Langendorff system to a Petri dish and the cannula removed from the aorta. The atria were cut away and discarded, and the remaining digested ventricles were finely cut up and flushed into a stirring chamber with 10mls of collected enzyme solution. The contents were then mechanically dispersed by slow stirring and constantly bubbled with 100% O$_2$ at 37°C.

After 5 minutes of mechanical dispersion, the cell suspension was filtered through a nylon mesh (aperture 250µm), and the filtrate collected in a beaker and subsequently centrifuged at 100g for 1 minute in 10mL Falcon tubes. The residual, undigested tissue that remained on the nylon mesh was then flushed back to the mechanical dispersion chamber, together with another 10mL of enzyme solution. This procedure was repeated once or twice more, or until no more undigested tissue remained.

After settling down, the supernatant in all three centrifuged tubes was pipetted off and discarded. The pellet of cells settled at the bottom of the tube was re-suspended in Solution A plus 500µM CaCl$_2$, and centrifuged for another minute. Again the cell suspension was left to stand so the cells could settle to the bottom, then they were resuspended, this time in Hepes-buffered Dulbecco's modified Eagle's medium (DMEM, Sigma, UK) at pH 7.4 and kept at room temperature, and away from light until use. The gradual re-addition of calcium prevents cell death from calcium overload.

Only rod-shaped myocytes, which were calcium-tolerant and did not contract spontaneously, were used in experiments. An example of a healthy myocyte is illustrated in Figure 1.
2.2. Solutions and ventricular myocyte superfusion

2.2.1. Solutions

The amounts in brackets refer to concentrations, in mM, unless otherwise stated. All solutions, except those used for calibration, had a pH of 7.4 and an average osmolarity of 300mOsm.

Hepes-buffered Tyrode: NaCl (135), Hepes (20), KCl (4.5), MgCl₂ (1), CaCl₂ (2), glucose (11). pH was adjusted to 7.4 at 37°C with 4N NaOH.

CO₂/HCO₃⁻-buffered Tyrode: NaCl (125), KCl (4.5), MgCl₂ (1), CaCl₂ (2), glucose (11), NaHCO₃ (22). pH was adjusted to 7.4 by bubbling with 5% CO₂/air at 37°C for at least one hour before starting the experiments.

Ammonium Tyrode, Hepes-buffered: NaCl (115), NH₄Cl (20), Hepes (20), KCl (4.5), MgCl₂ (1), CaCl₂ (2), glucose (11). pH was adjusted to 7.4 with 4N NaOH at 37°C.
Acetate Tyrode, Hepes-buffered: Na⁺-acetate (80), NaCl (55), Hepes (20), KCl (4.5), MgCl₂ (1), CaCl₂ (2), glucose (11). pH was adjusted to 7.4 with 4N NaOH at 37°C.

High [K⁺] CO₂/HCO₃⁻-buffered Tyrode (iso-osmotic): NaCl (85), KCl (4.5), MgCl₂ (1), CaCl₂ (2), glucose (11), NaHCO₃ (22). pH was adjusted to 7.4 by bubbling with 5% CO₂/air at 37°C for at least one hour before starting the experiments.

Na⁺-free Hepes-buffered Tyrode: N-Methy-D-Glucamine (NMDG; 140), KCl (4.5), MgCl₂ (1), CaCl₂ (2), Hepes (20), glucose (11). pH was adjusted at 37°C using 5N HCl.

Na⁺-free CO₂/HCO₃⁻-buffered Tyrode: NMDG (135), KCl (4.5), MgCl₂ (1), CaCl₂ (2), glucose (11). pH was adjusted to 7.4 by bubbling with either 5% CO₂/air or 20% CO₂/air at 37°C for at least two hours before starting the experiments.

Cl⁻-free Hepes-buffered Tyrode: Na⁺-gluconate (135), K⁺-gluconate (4.5), Mg²⁺-gluconate (1), Ca²⁺-gluconate (8.5), Hepes (20), glucose (11), 2,3-butanedione monoxime (20). pH was adjusted to 7.4 at 37°C with 4N NaOH.

Cl⁻-free CO₂/HCO₃⁻ buffered Tyrode: Na⁺-gluconate (118), K⁺-gluconate (4.5), Ca²⁺-gluconate (8.5), Mg²⁺-gluconate (1), NaHCO₃ (22), Glucose (11), 2,3-butanedione monoxime (20). pH was adjusted to 7.4 at 37°C by bubbling with 5% CO₂/air.

Calibration solution for pH 5.5: KCl (140), MgCl₂ (1), EGTA (0.5), nigericin (0.01), MES (20), pH balanced to 5.5 with NaOH and HCl.

Calibration solution for pH 6.5 or 7.0 or 7.5: KCl (140), MgCl₂ (1), EGTA (0.5), nigericin (0.01), Hepes (20), pH balanced with NaOH and HCl.
Calibration solution for pH 8.5: KCl (140), MgCl2 (1), EGTA (0.5), nigericin (0.01), CAPSO (20), 2,3-butanedione monoxime (11), pH balanced to 8.5 with NaOH and HCl.

Solution ‘A’ for cell isolation: NaCl (128), KCl (2.6), Hapes (10), Taurine (20), MgSO4 (1.18), glucose (11), KH2PO4 (1.18). pH was balanced to 7.4 with NaOH and bubbled with 100% O2. All the solutions for myocytes isolation were prepared using ultrapure deionised water.

Storage solution, Dulbecco’s Modified Eagle Medium (DMEM): NaCl (15), Hapes (20), 50U/ml penicillin, 50μg/ml streptomycin, pH balanced to 7.48 at room temperature with NaOH.

Reaction medium (RM) for CA assay: NaCl (15), KCl (35), Hapes (20), K+-gluconate (105). The medium was adjusted with 4N NaOH at 2°C to the desired pH value. The ionic strength (I) of the solution was calculated as \(I = 0.5 \Sigma (C_i z_i^2) \) where \(C_i \) is the concentration of \(i^{th} \) ion present in the solution and \(z_i \) its charge. The summation, \(\Sigma \), is taken over all the ions in the solution. The ionic strength component due to the charged species of buffer was calculated using the pK_a value at the desired temperature and pH.

Double-buffered reaction medium: NaCl (15), KCl (35), Hapes (20), MES (20), K+-gluconate (105). The medium was adjusted with 4N NaOH to pH 8.0, 7.5, 7.0 and 6.5 at 2°C.

High buffering capacity reaction medium: Hapes (130), NaCl (50). The medium was adjusted with 4N NaOH to pH 8.0, 7.5, 7.0 and 6.5 at 2°C, 12°C, and 22°C.
Saturated CO₂ solution for CA assay

A saturated CO₂ solution was obtained by bubbling 99.9% CO₂ into ultrapure, deionized water. Water was bubbled in a water-jacketed glass vessel, and temperature was kept constant using a thermostated water recirculator (Grant LTD6G, Cambridge). The final CO₂ concentration in solution was calculated from previously published CO₂ solubility data (Gevantman, 1995).

2.2.2. Supervision chamber for cardiac myocytes

Experiments in which living isolated cardiac myocytes were used, involved myocyte superfusion in specially designed chambers. Perspex chambers (volume ~200μL) were made specifically to fit onto the stage of a microscope. Solution was delivered through tubes, driven by a peristaltic pump at 3mL/min. Experiments were carried out at 37°C and solutions were warmed to this temperature by pre-heating the bottles in a water bath and by warming solution just before it entered the superfusion chamber using a miniaturized feedback resistance heater (25W, RS components, UK). A metal tubing piece, connected in series with the line that feeds the solutions to the chamber, passed across the heater ensuring that the solutions were warmed and had the appropriate temperature on entering the chamber. The resistance heater was controlled by a feedback circuit, sampling the chamber temperature through a thermocouple probe.

A suction tube, fixed to the opposite end of the chamber, removed excess solution to keep a low level at steady state. The bottom of the chamber was sealed by a number 1 coverslip (Chance Proper, UK). The transparency and thickness of the coverslip would minimise light aberrations and absorption. The underside of the coverslip made contact
with the x40 objective lens of the viewing microscope through a thin layer of oil (Cargille oil, type DF; Cargille Laboratories, USA), applied before experiments. Oil has a similar refractive index to glass, i.e. the objective lens. Therefore, light passing through the coverslip to the lens, was not refracted greatly and the numerical aperture of the microscope (related to the resolving power) was increased.

In order to perform solution changes, two lines of solution were run simultaneously. A two-way tap was installed near the chamber. This tap diverted one solution to the superfusion chamber and the other solution to a waste reservoir. The tap can slide to a second mode, reversing the diversion. The continuous supply and removal of solution to the superfusion chamber permitted rapid solution change. To avoid loss of cells with the bulk flow of solution, the coverslip was treated with 100μL of poly-L-lysine (Sigma, UK). After washing the poly-L-lysine, cells could be applied. The charge deposited by poly-L-lysine on the coverslip helps cells to adhere.

2.3. Drugs

NHE inhibitors: In this thesis three NHE inhibitors were used. Two of them were the pyrazine-derived generic inhibitors 5-(N,N-dimethyl)amiloride (DMA) and 5-(N-Ethyl-N-isopropyl)amiloride (EIPA). Another class of inhibitor, Cariporide (HOE-642), a benzoylguanidine compound with high specificity for the NHE-1 isoform, was also used. Cariporide was kindly provided by Sanofi-Aventis (Germany). DMA and EIPA were purchased from Sigma (Sigma-Aldrich, UK).

NBC inhibitors: Two NBC inhibitors were used in the experiments of this thesis. One was the non-selective anion transport inhibitor 4,4'-diisothiocyanatostilbene-2,2'-
disulphonic acid (DIDS). The other was S0859, a selective, high-affinity generic NBC inhibitor. S0859 was kindly provided by Sanofi-Aventis, Germany, and DIDS was purchased from Sigma (Sigma-Aldrich, UK).

CA inhibitors: In this thesis three CA inhibitors were used, acetazolamide (ATZ; K_i for human CA II = 10nM), ethoxozolamide (ETZ; K_i for human CA II = 1nM) and the compound “14v” (1-[5-sulfamoyl-1,3,4-thiazol-2-yl-(aminosulphonyl-4phenyl)]-2,6-dimethyl-4-phenyl-pyridinium perchlorate) (Alvarez *et al.*, 2003; Supuran *et al.*, 2004). ATZ and ETZ are uncharged, membrane-permeant sulphonamides and when applied to an isolated cell, will inhibit both intra- and extracellular CA isoforms. “14v” is a positively-charged heterocyclic sulphonamide that is membrane-impermeant, and will only inhibit membrane-associated CA isoforms with active sites oriented towards the extracellular space (Supuran *et al.*, 2004). The affinity of this compound for CA IV and CA II is in the nanomolar range (Scozzafava *et al.*, 2000; Supuran *et al.*, 2004). ATZ and ETZ were purchased form Sigma (Sigma-Aldrich, UK). 14v was kindly provided by Dr. Claudiu T. Supuran, Laboratorio di Chimica Bioinorganica, Universita degli Studi di Firenze, Firenze, Italy.

2.4. Enzyme and ventricular tissue preparation

2.4.1. CA II

CA II purified from bovine erythrocytes (Sigma-Aldrich, UK), was dissolved in RM at a concentration of 1mg/mL and kept on ice until use.
2.4.2. Cardiac ventricular homogenates for CA activity assay

Cardiac ventricular tissue was obtained by a procedure similar to the one used for isolating ventricular myocytes (see Ventricular Myocyte Isolation), with slight modification. Briefly, once the heart had been removed from the animal, it was placed in a warmed water-jacketed chamber and connected to the Langendorff system through the aorta where it was perfused with Solution A plus 750μM CaCl₂ and 16 IU/mL heparin.

Solution A was continuously bubbled with 100% O₂ and maintained at 37°C by heated water-jacketed chambers before being supplied to the heart. After 10 minutes of retrograde perfusion, the heart was removed from the Langendorff apparatus and placed in an ice-cold petri dish. The heart was rinsed with ice-cold RM, and the atria and any remaining connective tissue were removed.

The excised ventricles were then finely chopped in the cold petri dish kept on ice, and quickly weighed. The tissue was placed in a round-bottom plastic tube and suspended in ice-cold RM plus 0.5% (v/v) Triton-X-100 to give a 1/10 (w/v) dilution. The tube was placed on ice and the suspension was homogenised using a Polytron homogenizer (Polytron® Kinematica AG, Switzerland) with four bursts of 10s each. Protein concentration in cardiac homogenates was quantified spectrophotometrically using the Bradford’s assay (QuickStart, BioRad). Absorbance values were calibrated to protein content using different dilutions of bovine serum albumin (BSA) as standard. A 20μL sample of a 1/100 (v/v) homogenate dilution was used to determine protein content. Final protein concentration in the assay was 2.8mg/mL.
2.5. **Assay of carbonic anhydrase activity**

The uncatalysed reaction of reversible hydration-dehydration of CO\textsubscript{2} yields H\textsubscript{2}CO\textsubscript{3} as an intermediate which instantly dissociates into HCO\textsubscript{3}- and H+-ions:

\[
\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{CO}_3 \leftrightarrow \text{HCO}_3^- + \text{H}^+
\]

In the presence of CA, the reaction proceeds without the formation of H\textsubscript{2}CO\textsubscript{3} as an intermediate. In this case, CO\textsubscript{2} undergoes nucleophilic attack by an hydroxyl ion (OH-) bound at the active centre of the enzyme, resulting in the formation of a HCO\textsubscript{3}- ion. A water molecule displaces the HCO\textsubscript{3}- and undergoes protolysis yielding a H+ and regenerates the OH- ion at the active site (see Chapter 3 for a detailed description of the reaction mechanism). The reaction can be expressed in two steps as:

1. \[
\text{H}_2\text{O}^{-} + \text{CO}_2 \leftrightarrow \text{E}-(\text{OH}^-)\text{CO}_2 \leftrightarrow \text{E}-\text{HCO}_3^- \leftrightarrow \text{E}-\text{H}_2\text{O} + \text{HCO}_3^- \quad (i)
\]
2. \[
\text{E}-\text{H}_2\text{O} \leftrightarrow \text{H}^+ \cdot \text{E} - \text{OH}^- \leftrightarrow \text{E} - \text{OH}^- + \text{H}^+ \quad (ii)
\]

where E represents the enzyme, the first step (i) corresponds to the formation of HCO\textsubscript{3}-, and the second (ii) to the regeneration of OH- and release of a H+-ion.

For simplicity, the uncatalysed and catalysed reactions can be reduced to:

\[
\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{HCO}_3^- + \text{H}^+
\]

Because H+-ions are produced in the course of the reaction for CO\textsubscript{2} hydration, either catalysed or uncatalysed, the rate of change of pH provides a measured index of
Chapter 2 – General Methods

the reaction velocity. Therefore, CA activity can be measured by following the rate of fall in pH when CO₂ is added to a solution containing the enzyme (Figure 2).

The reaction set-up consisted of a combination digital mini pH-electrode (Biotrode, Hamilton, Switzerland) incorporated in a 4 mL water-jacketed borosilicate glass reaction chamber, mounted on a magnetic stirring plate to provide continuous mixing throughout the assay. The temperature throughout the assay period was kept constant (typically 2°C unless otherwise stated) by using a thermostated water recirculator.

For the assay of CA II activity, a volume of 1.5mL RM plus 0.5μL of CA II dilution were placed in the reaction chamber and the pH was recorded. Once the pH had stabilized, 500μL of CO₂-saturated solution were added to start the reaction giving an initial CO₂ concentration of 15.6mM and a final reaction volume of 2mL. The final [CA II] in the reaction mixture was 7.75nM.

For measuring CA activity in ventricular cardiac homogenates, 600μl RM and 400μL of homogenate were placed in the reaction chamber and, once the pH had stabilised, the reaction was started by adding 333μL of CO₂-saturated water. After starting the reaction, the time-course of pH change was recorded until equilibrium was reached. The uncatalyzed rate of reaction was measured by recording the time-course of change of pH after addition of the appropriate volume of CO₂-saturated solution to RM (Figure 2).
Figure 2. Assay of carbonic anhydrase activity. Panel A shows a typical experiment recording of the time-course of pH change after addition of an aliquot of CO$_2$-saturated deionized water in the presence (black) or absence (red) of 7.75nM CA II at 2°C, and at a buffer concentration of 15mM (Hepes). Data obtained in the absence of CA was used to obtain the uncatalysed rate of reaction. Panel B shows the best-fit to data predicted by a kinetic model (blue) during the initial 0.25 pH unit drop (see page 52). The best-fit was used to estimate k_f. The blue circle indicates the end of the fitting interval.

Solution pH was recorded at 1 Hz and the CO$_2$ hydration rates were expressed as a first-order forward hydration constant k_f (s$^{-1}$). The value for k_f was estimated by fitting a kinetic model to the pH time-course data. The model simulates the time-course of pH change on CO$_2$ addition and compares it with experimental data. The algorithm solves a
three-component reaction system of ordinary differential equations for pH, \([HCO_3^-]\) and \([CO_2]\). Changes in pH are induced by the hydration reaction \(CO_2\), yielding \(H^+\) and \(HCO_3^-\).

Due to the presence of buffer, the change in pH is given by the change in \([H^+]\) divided by the buffering capacity of the reaction medium. In the case of CA II and CA activity in cardiac homogenates assays (in-vitro assays), the equations solved are:

\[
\frac{dpH}{dt} = -\frac{1}{\beta(pH)} \cdot \left(\gamma \cdot k_f^0 \cdot [CO_2] - \gamma \cdot k_r^0 \cdot 10^{-pH} \cdot [HCO_3^-] \right) \tag{1}
\]

\[
\frac{d[HCO_3^-]}{dt} = \gamma \cdot k_f^0 \cdot [CO_2] - \gamma \cdot k_r^0 \cdot 10^{-pH} \cdot [HCO_3^-] \tag{2}
\]

\[
\frac{d[CO_2]}{dt} = -\frac{d[HCO_3^-]}{dt} \tag{3}
\]

where \(\beta(pH)\) is the buffering capacity of the sample solution, determined by the physico-chemical properties of the buffer species ie. Hepes \((\ln 10 \times [\text{buffer}] \times 10^{(pH-pKa)})/(1+10^{pH-pKa})^2\). Typically the concentration of buffer in the reaction chamber was 16mM unless otherwise stated. In the case of in-vitro assays of cardiac homogenates, the dilution of with RM sanctions the assumption that the contribution of homogenate buffering capacity to total buffering capacity is negligible.

Gamma (\(\gamma\)) is a dimensionless factor that quantifies the acceleration of \(CO_2\) hydration in the presence of CA. \(\gamma\) value was derived by best-fitting data with the model. Constants \(k_f^0\) and \(k_r^0\) are the spontaneous reaction rate constants for \(CO_2\) hydration (forward) and dehydration (reverse), respectively. Constants \(k_f\) and \(k_r\) are expressed as multiples of the spontaneous rates, \(k_f^0\) and \(k_r^0\), and a non-dimensional multiplier \(\gamma\), thus
\(k_f = \gamma k_f^0 \) and \(k_r = \gamma k_r^0 \) (for spontaneous CO\(_2\) hydration, \(\gamma = 1 \)). The ratio of \(k_f/k_r \) is equal to the equilibrium constant for carbonic buffer. Note that \(k_f \) and \(k_r \) are constrained such that \(k_f/k_r = K_{CO_2} = [H^+]\times[HCO_3^-]/[CO_2] \). It is therefore sufficient to fit only one parameter to the data. The spontaneous rate of hydration \(k_f^0 \) is determined from experiments performed in the absence of CA activity e.g. enzyme-free runs or runs performed in the presence of CA inhibitors such as ATZ.

The initial conditions for the simulations were determined by the starting pH of the assayed solution, assuming \([CO_2] = 0\)mM and \([HCO_3^-] = 0\)mM. Differential equations were solved using MATLAB ODE15s. The initial conditions for the simulations are determined by the starting pH of the in vitro assayed solution. It is assumed that there is nil CO\(_2\) and nil HCO\(_3^-\).

The simulations were performed for a range of multipliers \(\gamma \) varying between 1 (uncatalysed rate) and 1000 (1000-fold acceleration by CA). The goodness of fit between data and simulation was determined by the least squares method:

Error = \(\Sigma (\text{data-simulation})^2 \)

Chi-squared testing was used to identify significant fits. The level of significance judged worthy of a good fit was 5\% and below. Most fits produced good or very good fits with errors not larger than 0.05 pH units over the fitting time-course.

The period over which best-fitting was delimited depended on the fitting protocol. If fitting was performed over the entire time course, least squares was applied throughout the time course. If the fitting interval was limited to a given fall in pH e.g. by 0.2 units, the errors were summed for the relevant time period only.
2.6. Measurement of intracellular pH: Whole-cell Epifluorescence Microscopy

One of the most widely used techniques for measuring pH$_i$ employs pH-sensitive fluorescent indicators or fluorophores. Fluorescence is a physical phenomenon by which a substance absorbs light at a certain frequency and emits light at a lower frequency. A photon of energy of a certain wavelength is supplied by an external source and absorbed by the fluorophore, creating an excited electronic state within the molecule. The excited state exists for a finite time after which, another photon of energy is emitted returning the fluorophore to its original state. Due to energy dissipation during the excited-state lifetime, the energy of this photon is lower, and therefore of longer wavelength, than the excitation photon.

Fluorescent dyes can be used in biology to quantify intracellular ions, such as Ca$^{2+}$, Na$^+$ or H$^+$. The binding of such an ion produces a change in either the absorption spectrum (e.g. SBFI used to measure Na$^+$) or the excitation spectrum (e.g. Fluo-3 used to measure Ca$^{2+}$). The advantage of using fluorescence to measure pH$_i$ is that they can be used to study small cells, even organelles, with great spatial and temporal resolution.

Fluorophores have been developed that have excellent pH sensitivity, have the ability to diffuse across the cell membrane and once hydrolysed inside the cell are membrane-impermeant such that they are trapped inside the cell. Such a compound is carboxy-seminaphthorhodafluor-1 (carboxy-SNARF-1; Molecular Probes, USA). In this thesis, the acetoxymethyl (AM) ester form of SNARF-1 was used. The ester form of SNARF is uncharged, and highly lipid soluble and therefore membrane permeant. Inside the cell esterases hydrolyse the ester bond producing the membrane-impermeant carboxylic acid.
The pKa of carboxy-SNARF-1 falls within the range 7.4-7.6 (Haugland, 2002), which makes it a suitable fluorophore for physiological studies. Carboxy-SNARF-1 is a single excitation and dual emission dye and therefore, a signal ratio output can be obtained. Measurement of a signal ratio eliminates the potential artefacts from changes in dye concentration, path-length and excitation intensity. Excitation at 540nm results in the emission of two strong, inversely related fluorescence signals at 580nm and 640nm. The two wavelengths correspond to the protonated (580nm) and unprotonated (640nm) forms of the dye, the ratio of which can be converted to a linear pH scale using a standard in situ nigercin calibration technique (see Calibration section). The emission spectra for carboxy SNARF-1 are given in Figure 3.

Figure 3. Emission spectra of carboxy-SNARF-1 excited at 534nm. From (Haugland, 2002).

SNARF-1 has many advantages over other pH-sensitive dyes including strong intensity at both emission wavelengths. Its long excitation wavelength also permits its use with certain drugs (such as amiloride and its derivatives, and also with stilbene...
compounds such as DIDS) that would otherwise emit fluorescence themselves if exposed to shorter wavelength light.

In order to load the cells with SNARF-1, rat cardiac myocytes suspended in DMEM were mixed with 1-2μL of stock solution of the AM ester form of carboxy-SNARF-1 dissolved in dimethyl sulphoxide (DMSO; Sigma, UK) (1mg/mL). After an 8 minute loading period in darkness at room temperature, most of the dye that has passively entered the cell would have been hydrolysed and trapped inside the cell.

In this thesis, pH$_i$ was measured using the epifluorescence technique. This particular style of fluorescence microscopy uses the microscope objective to illuminate the sample and the fluorescent signal is then collected, using the same objective, from an entire cell. In order to measure this, an inverted microscope (Nikon, Telford, UK) is coupled to a pair of bialkali photomultiplier tubes (PMTs, Thorn EMI, UK) for detection of emitted light, and to a source of excitation light from a 100W xenon lamp. Light from the xenon lamp first passes a 0.2% transmission neutral density filter to prevent phototoxicity and dye photobleaching.

Afterwards, the light of reduced intensity passes the 540nm interference filter (Glen Spectra Ltd, UK) and then reflected off a long-pass dichromatic mirror at 560nm (Glen Spectra Ltd, UK) into a Nikon Ph4DL x40 oil-immersion objective focused on the cell under observation.

A diaphragm is used to limit the area over which fluorescence will be measured. This ensures that fluorescence is recorded from the desired regions of the field of view, and prevents possible damage to the PMTs. The emitted light, together with the excitation light, then passes through another long pass dichromatic mirror at 610nm.
(Glen Spectra Ltd, UK). This ensures the emitted light is separated into two beams, so that the PMTs can detect the signal from the protonated and unprotonated forms of the dye independently. To filter out light of unwanted wavelengths, light passes through interference 580 ± 5nm and 640 ± 5nm filters before it reaches the PMTs.

The current signals from the two PMTs are converted into a voltage signal, filtered at 10Hz and digitised at 0.5 kHz for collection on a computer drive. A sampling program records and ratios the digitized PMT outputs at 5Hz (Spike 4, Cambridge Electronic Design, UK).

A tungsten light bulb provides a concurrent beam of light that illuminates the cells for purposes of visualisation. A filter which transmits wavelengths above 650nm (red filter) was placed in the light path of this in order to avoid interference with fluorescence images. The transmission image is collected by a camera and displayed on a monitor. Figure 4 shows a schematic representation of this epifluorescence set-up.

2.6.1. Calibration of pH

In this thesis, data obtained from intracellular recording of SNARF-1 epifluorescence are in the form of the ratio of the intensities of two wavelengths detected independently by two photomultiplier tubes. This ratio is independent of light-path, dye concentration, photobleaching and most importantly, it is dependent on pH. Calibration of the ratiometric signal was performed using the nigericin method (Thomas et al., 1979; Buckler & Vaughan-Jones, 1990). Nigericin is a membrane-soluble ionophore, which exchanges H⁺ for K⁺ across the cell membrane. If the intracellular and extracellular [K⁺] are equal, i.e. around 140mM, the intracellular pH should be constrained to equal the pH
of the bathing solution. Thus, by superfusing the cells with solutions of different pH and recording the intracellular fluorescence ratio (R), a relation between the intracellular pH (equal to extracellular pH) and fluorescence can be obtained and fitted to a sigmoidal function

$$\text{pH} = \text{pK}_a + \log_{10}\left(\frac{R_{\text{max}} - R}{R - R_{\text{min}}}\right) + \text{pF}$$

where R_{max} is the maximum fluorescence ratio corresponding to an overwhelming ratio of protonated to unprotonated dye (normally detected at pH 5), R_{min} is the minimum fluorescence ratio corresponding to an overwhelming ratio of unprotonated to protonated dye (normally detected at pH 9), pK_a is the apparent dissociation constant for the protonated dye, and pF, the negative logarithm of the ratio of fluorescence at pH 9 to pH 5, measured at 640nm.

In order to obtain a sigmoid fit to data, a three-parameter sigmoid fit was performed for R_{max}, R_{min} and the sum of pK_a and pF under a single fitting variable. Calibration experiments are carried out on cells loaded with fluorescent dye. The superfusate is changed to one of the calibration solutions listed in the Solutions section of this chapter. In a series of solution changes, the extracellular pH was changed from 5.5 to 8.5 in any pattern. The use of solutions with pH 5 and 9 was avoided in order to improve the survival of cells.

As the steady-state level approaches, R is acquired and plotted as a function of the pH of the bathing solution. Calibration was performed every six months and consecutive estimates of calibration parameters did not vary significantly between calibrations.
It is known that nigericin contaminates experimental apparatus due to its persistence in tubing and in the Perspex superfusion chamber (Richmond & Vaughan-Jones, 1997).
Figure 4. Schematic representation of the epifluorescence set-up for carboxy-SNARF-1. The specimen under a x40 objective lens is excited with light from a Xenon lamp. Light is then passed through a series of filters and mirrors to eliminate the excitation light and extract light of wavelengths around 580nm and 640nm for independent measurement of intensity by two PMTs.
To avoid contamination and detrimental consequences on subsequent experiments, the apparatus was cleaned by washing tubing and the superfusion chamber with 100mL of 2% bovine serum albumin (Sigma, UK) at 37°C, 2l of 20% Decon 75 (Decon Labs, UK) at 60°C, 100mL of ethanol at room temperature and finally with 3L of distilled water. Figure 5 shows a typical calibration curve performed on rat myocytes loaded with carboxy-SNARF-1.

![Figure 5. Typical calibration curve for carboxy-SNARF-1-loaded isolated rat myocytes. Error bars (SE) fall within the size of averaged data points (n=10).](image)

2.7. **Measurement of the reversible intracellular CO₂ hydration in intact myocytes**

To quantify the kinetics of CO₂ hydration in intact myocytes, pHᵢ was measured while the superfusion solution was changed from Hepes-buffered (nominally CO₂-free) to CO₂/HCO₃⁻-buffered Tyrode at constant pHₑ. The reverse solution change was performed to estimate the kinetics of CO₂ dehydration. On raising extracellular CO₂, rapid permeation of CO₂ into the cell drives the CA-catalysed reaction in the direction of
H\(^+\)-ion generation, producing a fall of pH\(_i\). Conversely, when extracellular CO\(_2\) is lowered, CO\(_2\) is driven out of the cell driving the CA-catalysed reaction in the direction of intracellular H\(^+\) consumption and thus rising pH\(_i\) (Figure 6).

![Figure 6. Schematic diagram illustrating the reversible intracellular hydration of CO\(_2\).](image)

The rate of pH\(_i\) change on CO\(_2\) addition/removal was used to assess the degree of CA catalysis. Na\(^+\)-free superfusates or pharmacological inhibitors were used in order to block Na\(^+\)-dependent acid extrusion transporters (NHE and NBC) during the CO\(_2\)-induced acid load, which would otherwise alter the kinetics of pH\(_i\) change. To estimate the uncatalysed rate of intracellular CO\(_2\) hydration, switching between Hepes and CO\(_2\)/HCO\(_3\)-buffered superfusates was also carried out in the presence of 100\(\mu\)M ATZ. Figure 7A shows a representative experiment in which a cardiomyocyte superfusate was
switched from Hepes to CO$_2$/HCO$_3^-$ buffered solution ("ON") and then after 2 minutes, switched back to Hepes ("OFF"). The time-course of change of pH$_i$ during CO$_2$ addition was used to calculate the intracellular hydration reaction constant (k_{h}). When drugs were added, cells were superfused with drug-containing solution for at least 2 minutes before CO$_2$-containing buffer addition.

Reaction constants for the intracellular CA-catalysed reaction were estimated by simultaneously solving a set of differential equations that simulate the change of pH$_i$ after switching from Hepes to CO$_2$/HCO$_3^-$-buffered superfusates, and back. The equations were similar to those used previously for calculating the rate constants in the *in-vitro* enzyme assay, with modifications to comply with the conditions in an intact cell (permeation across a membrane and the intracellular buffering environment):

$$\frac{dpH_i}{dt} = -\frac{1}{\beta(pH_i)} \cdot (\gamma \cdot k_h^0 \cdot [CO_2]_i - \gamma \cdot k_r^0 \cdot 10^{-\rho pHi} \cdot [HCO_3^-]_i)$$ \hspace{1cm} (4)

$$\frac{d[HCO_3^-]_i}{dt} = \gamma \cdot k_h^0 \cdot [CO_2]_i - \gamma \cdot k_r^0 \cdot 10^{-\rho pHi} \cdot [HCO_3^-]_i$$ \hspace{1cm} (5)

$$\frac{d[CO_2]_i}{dt} = \rho \cdot P_{CO_2} \cdot ([CO_2]_0 - [CO_2]_i) - \frac{d[HCO_3^-]_i}{dt}$$ \hspace{1cm} (6)

Here, ρ represents the surface/volume ratio of the cell and equals 0.68\cdot105 dm$^{-1}$. P_{CO_2} is the membrane permeability to CO$_2$, 0.058 dm/s (Forster, 1969). $\beta(pH_i)$ represents the intrinsic buffering capacity (β_{int}) and its value for rat was obtained from previous work (Zaniboni *et al.*, 2003). The initial conditions when switching solutions from Hepes to HCO$_3^-$/CO$_2$-buffered solution were: pH$_i$ = steady-state starting pH$_i$, determined independently for each experiment; [CO$_2$]$_i$=0mM and [HCO$_3^-$]$_i$=0mM (Figure 7B). When
switching solutions from to HCO₃⁻/CO₂ to HEPES, the initial conditions were: pHᵢ = steadystate pHᵢ after the CO₂-induced acid load, [CO₂]ᵢ=[CO₂]₀=1.16mM (5% CO₂ at 37°C) and [HCO₃]ᵢ=[HCO₃]₀×10^⁰_pHᵢ-pH₀ (Figure 7C). The short time-course of simulations sanctions the assumption that HCO₃⁻ membrane permeability is nil.

Figure 7. Panel A shows a typical experiment in which the superfusate was switched from Hepes- to CO₂/HCO₃⁻-buffered solutions, and back to Hepes under Na⁺-free conditions. Panel B shows the best-fit predicted by the kinetic simulation to the first 0.2 pH unit drop induced by CO₂. Data is shown in red and the prediction in blue. The blue circle indicates the end of the fitting interval. The best-fit was used to estimate kᵣ. Panel C shows the best-fit predicted by the simulation to the first 0.2 pH units of rise in pH on CO₂ removal. Graphs from Matlab macro output.
CHAPTER 3

EFFECT OF MEMBRANE TRANSPORT INHIBITORS ON CARBONIC ANHYDRASE ACTIVITY

3.1. Introduction

The study of the mechanisms underlying intracellular pH (pHi) regulation requires physiological and kinetic characterization of the different H⁺-equivalent membrane transporters. A common approach involves pharmacological dissection through selective transporter inhibition. This approach, however, requires that the inhibitors be specific for their target transporters, without side effects on other processes involved in pHi regulation.

In order for membrane H⁺-equivalent transporters to work efficiently, the rate of supply or removal of substrate or products should not be rate-limiting. It has recently been proposed that CA can modulate H⁺ translocation or its equivalents (i.e. HCO₃⁻) across membranes by physically and functionally interacting with membrane pHi regulatory transporters, forming a transport metabolon: a complex between a transporter and the enzyme that produces or consumes the transport substrate (Alvarez et al., 2003; Alvarez et al., 2005; Li et al., 2002; Loiselle et al., 2004; McMurtrie et al., 2004; Sterling et al., 2002; Sterling et al., 2001a; Sterling et al., 2001b). Because the reversible CA-catalyzed reaction produces and consumes H⁺ and HCO₃⁻ it can facilitate the provision or removal of substrates or products associated with H⁺-equivalent membrane transporter (see Chapter 4). These associations have been described in heterologous transfection systems.
for CA II and NHE1 (Li et al., 2002), for CA II and IV and NBC (Alvarez et al., 2003), for CA II and IV with AE1 (Sterling et al., 2002; Sterling et al., 2001b), and for CA IX and AE1, AE2, and AE3 (Morgan et al., 2007)

In the case of HCO₃⁻ transporters, activity can be hindered by the slow kinetics of spontaneous equilibration of CO₂ and HCO₃⁻. Without enzymatic catalysis, the CO₂ hydration reaction is very slow, equilibration taking up to 30 seconds in unbuffered solution and several minutes in buffered cytoplasm (Leem & Vaughan-Jones, 1998a), therefore a HCO₃⁻ transport event may drive the buffer system out-of-equilibrium for several seconds, with a subsequent impediment to further HCO₃⁻ transport. Under physiological conditions CA is responsible for catalysing the interconversion of CO₂ and HCO₃⁻, thus ensuring rapid attainment of chemical equilibrium. Rapid equilibration of the carbonic buffer system is also important for facilitation of intracellular H⁺ mobility (Spitzer et al., 2002; Swietach et al., 2007) to ensure pHᵢ uniformity and efficient coupling between sub-membrane domains and the bulk cytoplasm.

Pharmacological inhibition of membrane pHᵢ regulatory transporters has been achieved by using drugs that target Na⁺/H⁺ exchange (NHE), and bicarbonate transport such as Na⁺-HCO₃⁻-cotransport (NBC) and anion exchange (AE; Cl⁻/HCO₃⁻ exchange).

Investigations on the contribution of NHE to pHᵢ regulation have been aided by a range of these inhibitors. Two major classes of pharmacological agents are currently used to inhibit NHE activity. One class includes amiloride and its 5’alkyl-substituted derivatives (Counillon et al., 1993; Masereel et al., 2003) such as 5-(N,N-dimethyl)amiloride (DMA) and 5-(N-Ethyl-N-isopropyl)amiloride (EIPA). DMA and EIPA are much more effective than amiloride on each studied NHE isoform and have
low inhibitory potency on Na\(^+\) channels and Na\(^+\)/Ca\(^+\) exchange. Another class of NHE inhibitors includes the benzoylguanidines and its derivatives. This group comprises compounds such as 3-methylsulphonyl-4-piperidinobenzoyl-guanidine methanesulphonate (HOE-694) (Scholz et al., 1993), 4-isopropyl-3-(methylsulphonyl)benzoyl-guanidine methanesulphonate (cariporide; HOE-642) (Scholz et al., 1995), eniporide (Baumgarth et al., 1997) and BIIB-513 (Gumina et al., 1999) which completely lack the Na\(^+\)/Ca\(^+\) exchanger inhibitory potency as well as the ability to block Na\(^+\)-channels (Figure 1). Later, some bicyclic selective NHE-1 inhibitors such as the quinoleine, zoniporide were developed (Guzman-Perez et al., 2001).

![Figure 1. Structure of some Na\(^+\)/H\(^+\) exchange (NHE) inhibitors. Two major classes of NHE inhibitors are shown. Pyrazine derivatives include Amiloride (A) and its related compounds, DMA (B) and EIPA (C). Benzoylguanidines include HOE-694 (D), cariporide (E), and eniporide (F).]
Stilbene drugs have been widely used for studying the role of HCO₃⁻ transporters in pHᵢ regulation (Cabantchik & Greger, 1992). Disulphonic stilbenes are among the most potent HCO₃⁻ transport inhibitors and include the commonly used compounds 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS; Figure 2A), and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS; Figure 2B).

DIDS has been widely used on studies investigating Cl⁻/HCO₃⁻ exchange (AE) and Na⁺-HCO₃⁻ cotransport (NBC) (Brune et al., 1994; Dart & Vaughan-Jones, 1992; Deitmer, 1991; Eladari et al., 1998; Lagadic-Gossmann et al., 1992; Leem et al., 1999; Leem & Vaughan-Jones, 1998b; Munsch & Deitmer, 1994). DIDS, however, as well as all disulphonic stilbenes, is not specific and thus will cause the non-selective inhibition of many types of bicarbonate transport. Recently, some more specific inhibitors have been developed. One example is S0859 (C₂₀H₂₄ClN₅O₃S; Sanofi-Aventis), a putative specific inhibitor for NBC. In cardiac myocytes, for example, S0859 (Figure 2C) has been shown to block completely NBC activity in the micromolar range (30μM), with no pharmacological activity on other sarcolemmal H⁺-equivalent transporter normally involved in pHᵢ regulation (Ch’en et al., 2008).
Figure 2. Structure of some bicarbonate transport inhibitors. Disulphonic stilbenes such as DIDS (A) and SITS (B) are non-selective inhibitors of bicarbonate transport. S0859 is a $\text{Na}^+\text{-HCO}_3^-$ cotransport (NBC) selective inhibitor.

It is well known that CA activity is inhibited by sulphonamides ($\text{R-SO}_2\text{NH}_2$; Figure 3) and monovalent anions (Lindskog, 1997b; Supuran et al., 2003). Although structurally different, both share common inhibition kinetics, behaving as noncompetitive inhibitors of the CA-catalysed reaction.

Variations on the sulphonamide structure have yielded additional CA inhibitors such as sulphamates ($\text{R-SO}_2\text{-NH}_2$), hydroxysulphonamides ($\text{R-SO}_2\text{NH(OH)}$), and hydroxamates ($\text{R-CO-NH-OH}$) (Ilies & Banciu, 2004b; Supuran et al., 2004). For example, steroidal and non-steroidal sulphamates, used as steroid sulphatase inhibitors to reduce estrogen levels in the treatment of hormone-dependent breast cancer, have been shown to inhibit CA in vitro (Abbate et al., 2004b; Ho et al., 2003; Vicker et al., 2003).
Chapter 3 - Effect of membrane transport inhibitors on carbonic anhydrase activity

Figure 3. Sulphonamide CA inhibitors. Unsubstituted sulphonamides such as acetazolamide (ATZ) and Ethoxyzolamide (ETZ) are very powerful and widely used CA inhibitors.

Monovalent anions inhibit the enzyme with sufficient potency to generate significant physiological consequences. CN⁻, HS⁻, SCN⁻, CNO⁻ and Cl⁻ are among the most potent anionic CA inhibitors described (Ilies & Banciu, 2004a).

Other drugs, originally not classified or intended as CA inhibitors, such as the cyclo-oxygenase-2 inhibitors celecoxib and valdecoxib (Weber et al., 2004), the anticonvulsants topiramate (Maryanoff et al., 2005) and zonisamide (Morgan et al., 2004), and the antipsychotic sulpiride (Abbate et al., 2004a) also show inhibitory activity against CA.

Although membrane transport inhibitors used in pHᵢ regulation studies are not known CA inhibitors, some of them contain chemical moieties that may potentially affect CA activity. The compound S0859, for example, presents a cyanide-substituted sulphonamide group (-SO₂NH(CN); Figure 2C). Therefore, it is important to determine if the drugs used for inhibition of membrane transporters in pHᵢ studies have non-specific effects on CA activity that could, in turn, affect pHᵢ regulation, either by affecting the
kinetics of CA-coupled membrane transporters or the intracellular CA-facilitated mobility of H⁺-ions.

3.1.1. Catalytic mechanism of carbonic anhydrase

Despite some differences between α-CA isoforms, all of them share basic catalytic features of hydration-dehydration of CO₂. Most of the work on the catalytic mechanism of CA derives from studies on the high-activity cytosolic isozyme CA II.

There is enough evidence, however, that indicates that all α-CAs share the same general mechanism (Liljas et al., 1994; Lindskog, 1997a; Lindskog & Liljas, 1993; Silverman & Lindskog, 1988). The catalytic mechanism for CO₂ hydration can be divided in two major steps: i) the nucleophilic attack of the CO₂ molecule by the zinc-bound OH⁻ with the formation of a coordinated HCO₃⁻, followed by the displacement of HCO₃⁻ by a water molecule, and ii) the transfer of an H⁺-ion from the zinc-bound water molecule to bulk solvent, thereby regenerating the nucleophilic zinc-bound OH⁻:

\[
\begin{align*}
\text{H₂O} & \quad \text{EZn-OH}^- + \text{CO}_2 \leftrightarrow \text{EZn-}-(\text{OH}^\cdot)\text{CO}_2 \leftrightarrow \text{EZn-HCO}_3^- \leftrightarrow \text{EZn-H}_2\text{O} + \text{HCO}_3^- \\
\text{EZn-H}_2\text{O} & \leftrightarrow \text{H}^+\text{-EZn-OH}^- \leftrightarrow \text{EZn-OH}^- \quad (\text{ii})
\end{align*}
\]

Figure 4 shows a schematic representation of the catalytic mechanism of CA in which the reaction intermediates are shown. The interaction of the substrate CO₂ with the CA active site is the first event in the catalytic cycle of CO₂ hydration. The CO₂ molecule, located in the hydrophobic association pocket, undergoes nucleophilic attack by the zinc-bound OH⁻-ion to generate a zinc-coordinated HCO₃⁻ (B and C). This HCO₃⁻
is also positioned by accepting a hydrogen bond from the NH moiety of Thr-199 (D). HCO$_3^-$ is then displaced from the active-site by a water molecule and liberated into solution (E).

Figure 4. The catalytic mechanism of carbonic anhydrase. In the absence of substrate, the “deep water” molecule establishes hydrogen bonds with the nucleophile OH$^-$ and with the amino group of Thr-199 (A). The catalytic process in the direction of CO$_2$ hydration begins with the positioning of the substrate CO$_2$ in the hydrophobic pocket and subsequent nucleophilic attack by the zinc-bound OH$^-$ (B). This causes a charge delocalization from the oxygen of the hydroxyl ion to the proximal CO$_2$ oxygen atom (C) leading to the formation of a HCO$_3^-$ ion. The HCO$_3^-$ remains bound to the Zn$^{2+}$ ion through its two oxygens, giving the metal a penta-coordinated conformation (D). The HCO$_3^-$ ion is also positioned by hydrogen bonds with the hydroxyl group and amide nitrogen of Thr-199. The bond between the Zn$^{2+}$ ion and the hydroxyl moiety of HCO$_3^-$ breaks, and a water molecules moves into its place (Step 4, E). The final step includes the release of the HCO$_3^-$ from the active site, addition of a water molecule at the deep water site, and transfer of a H$^+$ from the zinc-bound water to a buffer molecule via a shuttling mechanism involving His-64. Hydrogen bonds are indicated by dashed lines (Taken from Eriksson and Liljas, 1991).
The regeneration of the zinc-bound OH⁻ from the zinc-bound water is considered to be the rate-limiting step, and it can be divided in two sequential events: an intramolecular and an intermolecular proton transfer (Khalifah & Silverman, 1991; Lindskog & Silverman, 2000). The intramolecular step consists of proton transfer from the zinc-bound water molecule to the His-64 residue. Because of the distance from the imidazole ring of His-64 to the Zn²⁺ ion, a direct proton transfer from the zinc-bound water molecule to His-64 is not possible.

The transfer occurs through two bridging hydrogen-bonded water molecules forming a "proton wire" (Hakansson et al., 1992). This step is better described as a proton "translocation" and not a single proton transfer. The actual proton immediately transferred away from the zinc-bound water does not diffuse to His-64, instead, this proton is transferred to a hydrogen bonded water, which in turn transfers a different proton to another hydrogen bonded water molecule, which in turn transfers a different proton to the imidazole moiety of His-64 (Figure 5). If the "proton wire" is disrupted, the rate of proton transfer will be substantially diminished.

Figure 5. Intramolecular proton transfer. In order to regenerate the nucleophile (OH⁻), a proton is translocated via two hydrogen bonded water molecules from the Zn²⁺-bound water to His-64 (Taken from Stams and Christianson, 2000).
The intermolecular step consists of proton transfer from the His-64 residue to the buffer species in the bulk solution (Khalifah, 1973; Lindskog & Coleman, 1973; Silverman & Lindskog, 1988). The rate of proton transfer depends on the difference in pKa of the enzyme as proton donor with a pKa about 7 and the buffer as acceptor (Silverman & Lindskog, 1988; Silverman & Vincent, 1983).

At high buffer concentrations (above 5mM), the intramolecular proton transfer step limits the maximal rate of catalysis. The intermolecular transfer step is buffer-dependent and becomes rate limiting at very low buffer concentrations (Silverman, 1995).

3.1.2. Inhibition of carbonic anhydrase activity

Carbonic anhydrase inhibitors interfere with the catalytic mechanism of the enzyme in different ways, depending on their nature, the properties of the reaction environment (ie. pH, ionic strength), and the isozyme type.

Typically, CA inhibitors can be classified into two broad groups: monovalent anions and unsubstituted sulphonamides. Despite major structural differences, they share common inhibition kinetics, behaving as noncompetitive inhibitors with CO₂ (Bertini & Luchinat, 1983; Coleman, 1975; Mansoor et al., 2000; Maren & Sanyal, 1983); they do not dock within the hydrophobic pocket and usually bind directly to the Zn²⁺ ion in the active site. Additionally, divalent metal ions like Cu²⁺ and Hg²⁺ also inhibit CA activity (Tu et al., 1981). Crystallographic evidence has shown that these ions bind to both nitrogens of His-64 and thus prevent the rapid transfer of protons from the zinc-bound water molecule to the buffer (Eriksson et al., 1988).
3.1.2.1. Inhibition by anions

Most monovalent anions inhibit CA activity, but their apparent K_i values vary considerably (Ilieș & Banciu, 2004b). Also, the different CA isozymes display diverse susceptibility to anionic inhibitors. For example, CA I is more susceptible to inhibition by anions than CA II (Maren et al., 1976). CA IV (Baird et al., 1997; Maren & Conroy, 1993; Maren et al., 1993) and CA V (Heck et al., 1994) behave similarly to CA II. CA III, VI, and IX show intermediate sensitivity towards anionic inhibition (Engberg & Lindskog, 1984; Murakami & Sly, 1987; Rowlett et al., 1991; Wingo et al., 2001).

Early studies of the effect of anions on CA activity concluded that the anionic inhibition is non-competitive for the hydrase activity of the enzyme (Pocker & Stone, 1968), but competitive with regard to the anionic product HCO_3^- (Lindskog et al., 1971).

Monovalent anion inhibitors can be classified into three groups. The first group comprises anions with a protonated ligand. These inhibitors replace the zinc-bound OH^- ion without distorting the tetrahedral coordination geometry and maintain the hydrogen bond with the hydroxyl group of Thr-199. Examples of this group of inhibitors are HSO_3^- and HS^- (Hakansson et al., 1992; Mangani & Hakansson, 1992). HSO_3^- also displaces the deep water molecule establishing an hydrogen bond to the NH group of Thr-199 through one of its oxygen atoms (Figure 6A).

A second group comprises anions lacking a protonated ligand. Most of these anions do not remove the zinc-bound hydroxyl and bind close to the metal ion displacing the deep water molecule and, in several cases, hydrogen bond to the NH group of Thr-199. The metal ion is pentacoordinated in these complexes with a trigonal bipyramidal
geometry. SCN\(^-\), formate and acetate belong to this group of anionic inhibitors (Figure 6B). CN\(^-\) and NCO\(^-\) are also believed to belong to this group (Lindahl et al., 1993).

Figure 6. Structural representation of the binding of different inhibitors to the active site of the CA molecule. Figure 1A shows the mode of binding of bisulfite (HSO\(_3\)) as an example of the first group of inorganic anionic inhibitors. The binding of the second group of anionic inhibitors is exemplified by formate (HCOO\(^-\)) in Figure 1B. Azide (N\(_3\)) is shown in Figure 8C as an example of the third group of inhibitors. Figure 8D depicts the binding of a sulphonamide. The structure of the active site of the uninhibited enzyme is shown in Figure 8E.
The third group of anions corresponds to those that coordinate to the metal ion and displace the zinc-bound OH\(^-\) ion, but do not form a hydrogen bond to Thr-199. The resulting coordination geometry is still tetrahedral, but it is rather distorted (Figure 6C). Examples of anions in this group are the halides Br\(^-\) and I\(^-\). Azide (N\(_3^-\)) also belongs to this group but, in this particular case, an hydrogen bond is established with the NH group of Thr-199.

3.1.2.2. Inhibition by Sulphonamides

The discovery of CA inhibition by sulfanilamide, a monocyclic sulphonamide, by Mann and Keilin (Mann & Keilin, 1940) led to the development of important drugs used to treat or prevent several diseases and to a wide variety of CA inhibitors (Supuran & Scozzafava, 2000; Supuran et al., 2003). Sulphonamide compounds bind to the metal ion within the active site of the enzyme as anions via the nitrogen atom of the sulphonamide group. The NH\(^-\) group of the ionized sulphonamide replaces the zinc-bound OH\(^-\) and hydrogen bonds to the hydroxyl group of Thr-199. One of the sulphonamide oxygen atoms forms a hydrogen bond, with the peptide NH of Thr-199 displacing the deep water molecule, while the second oxygen points toward the Zn\(^{2+}\) ion but has no direct contact with the protein (Figure 6D). Because the NH\(^-\) of the sulphonamide group has the same position as the zinc-bound OH\(^-\) in the native structure (Figure 6E), the zinc coordination remains tetrahedral upon sulphonamide binding. The interaction of the rest of the sulphonamide molecule with the enzyme depends on which substituents are situated at various locations on the aromatic or heterocyclic part of the inhibitor, which would interact with hydrophilic and hydrophobic residues within the cavity.
In the present study, the effect of the selective NHE inhibitors DMA, EIPA and cariporide, the bicarbonate transport inhibitors DIDS and S0859, and the organic mercurial compound p-chloromercuribenzenzene sulfonate (pCMBS, an aquaporin inhibitor), on the activity of the purified enzyme (CA II), total CA activity in cardiac homogenates, and CA-catalysed intracellular CO₂ hydration in intact cardiac myocytes have been investigated.
3.2. Methods

3.2.1. CA activity assay

Details of the reaction medium (RM), CA enzymatic assay and the quantification of the first-order CO₂ hydration rate constant \(k_f \) have been fully described in the General Methods chapter (Chapter 2). Protein content in the homogenates was quantified spectrophotometrically using the Bradford assay (QuickStart, BioRad).

3.2.2. Measurement of intracellular reversible CO₂ hydration in intact myocytes

Details of measurement of intracellular CO₂ hydration and dehydration, and quantification of the intracellular CO₂ hydration rate constant \(k_f; \text{s}^{-1} \) have been fully described in the General Methods chapter (Chapter 2). All superfusates used were Na⁺-free.

3.2.3. Drugs

The following drug stock solutions for the CA assay were prepared in DMSO and stored at 4°C on the same day of the experiments (in mM): ATZ 100, S0859 40, cariporide 39.8, DMA 79, EIPA 40, DIDS 400, pCMBS 391.

In order to obtain the desired drug concentration during the assay, 5μL of the stock solution or its appropriate dilution were added in the reaction tube. The final DMSO concentration was kept at 0.25%(v/v). For single cell epifluorescence experiments, drugs were dissolved in the superfusates. Final concentration of drugs were (in μM): cariporide 30, S0859 15, DIDS 100, pCMBS 250.
3.3. Results

3.3.1. Effect of ATZ on CA II and endogenous CA activity in cardiac homogenates

In order to confirm the presence of CA activity in cardiac homogenates, and to compare the inhibitory potency of the widely used sulphonamide CA inhibitor acetazolamide (ATZ) on purified CA II and endogenous CA in cardiac ventricular homogenates, a dose-response analysis was performed in CA activity assays. Figure 7A shows the effect of increasing doses of ATZ on the rate of change of pH due to CO₂ hydration in the presence of CA II. Similarly, increasing the concentration of ATZ caused significant slowing of CO₂-induced rate of acidification. The highest dose of ATZ resulted in a rate similar to that corresponding to the spontaneous reaction in the absence of CA II (CA-free blank shown in red).

Figure 7B shows a similar experiment but this time in the presence of cardiac homogenate. Increasing concentrations of ATZ also resulted in significant slowing of acidification induced by CO₂ hydration. Figure 7C shows the dose-response curves for ATZ on CA II and endogenous CA activity in cardiac homogenates. A four-parameter sigmoidal best-fitting procedure (Prism 4, GraphPad Software, Inc.) was used to obtain IC₅₀ values. Doses of ATZ used were: 0.1, 1, 10, 100nM, 1 and 10mM. The dose-response curve (Figure 1C) shows IC₅₀ values of 7.3nM and 3.3nM for CA II (n=4) and cardiac homogenates (n=8), respectively. The value of IC₅₀ for ATZ on CA II activity is in agreement with previously published data (~10nM) (Khobzaoui et al., 2004; Maren & Sanyal, 1983; Supuran, 2004).
Figure 7. Dose-dependent inhibition of CA activity by ATZ. After starting the reaction, the time-course of pH change in the presence of CA II (A, blue) or cardiac homogenate (B, green) was recorded until equilibrium was reached. The uncatalysed rate of reaction was measured by recording the time-course of change of pH after addition of CO$_2$-saturated water to CA-free blanks (panels A and B, red). CA activity was confirmed by including acetazolamide (ATZ) in the reaction media containing cardiac homogenate (panel B) or CA II (A). Doses of ATZ used were: 0.1 (not shown), 1, 10, 100nM, 1 and 10μM (not shown). The dose-response curve (C) results in IC$_{50}$ values of 7.3nM (n=4) and 3.3nM (n=8) for CA II and cardiac homogenates, respectively.
3.3.2. Screening the effect of membrane transport inhibitors on carbonic anhydrase activity

Six different membrane transport inhibitors were screened for their ability to inhibit CA II activity. The compounds used were the generic NHE inhibitors DMA and EIPA, the selective NHE1 isoform inhibitor cariporide, the non-selective/generic bicarbonate transport inhibitor DIDS, the selective NBC inhibitor S0859, and the aquaporin (AQP) inhibitor pCMBS. The inhibitor concentration employed in the screening was in the range of those used commonly in cellular experiments: DMA 200µM (Leem et al., 1999; Loh et al., 1996), EIPA 30µM (Bagnis et al., 2001; Bevensee et al., 1999), cariporide 30µM (Ch'en et al., 2003; Russ et al., 1996; Stuwe et al., 2007; Swietach & Vaughan-Jones, 2005), DIDS 100µM (Brune et al., 1994; Leem & Vaughan-Jones, 1998b; Schwiening & Boron, 1994), S0859 15µM (Ch'en et al., 2008; Schwab et al., 2005; Yamamoto et al., 2005), and pCMBS 500µM (Cooper & Boron, 1998; Endeward et al., 2006).
Figure 8. Six different membrane transport inhibitors were screened for their ability to inhibit CA II activity. The panels show typical pH experimental recordings of the different drugs tested at concentrations commonly used in cellular experiments (in μM): DMA 200 (A), cariporide 30 (B), EIPA 30 (C), DIDS 100 (D), S0859 15 (E), and pCMBS 500 (F). Only DMA and EIPA had no effect on CA II activity.
Figure 8 shows typical experimental recordings of the effect of the different inhibitors on the *in vitro* rate of acidification induced by CO₂ hydration. The experimental traces reveal that neither of the generic NHE inhibitors DMA (Figure 8A) nor EIPA (Figure 8C) inhibited CA II activity. In contrast, cariporide (Figure 8B), used at a concentration of 30μM, inhibited CA by 75%. Both bicarbonate transport inhibitors, DIDS (100μM; Figure 8D) and S0859 (15μM; Figure 8E), inhibited CA II activity by 68% and 50%, respectively. pCMBS at 500μM (Figure 8F) inhibited CA II activity by 88.5%. Figure 9 shows a comparison of the effect of the different transport inhibitors on normalised CA II activity.

![Figure 9. Comparison of the effect of membrane transport inhibitors on CA II activity.](image)

Neither DMA nor EIPA inhibited CA II activity. At 30μM, cariporide inhibited CA by 75%. DIDS at 100μM inhibited CA II activity by 68% and 15μM S0859 by 50%. pCMBS at 500 μM inhibited CA II activity by 88.5% (**p<0.001). The bars represent best-fit kₗ values normalised to the kₗ of the uncalysed reaction.
A dose-response analysis of those membrane transport inhibitors that had an effect on CA II activity was carried out. A sigmoidal best-fitting procedure (Prism 4, GraphPad Software, Inc.) was used to obtain IC$_{50}$ values, for each drug, for CA II and total CA activity in cardiac homogenates. Figure 10A shows the experimental recordings of the effect of increasing concentrations of cariporide on the rate of CO$_2$-induced acidification in the presence of CA II. Figure 10B shows the comparison of dose-response curves of the effect of cariporide on CA II and endogenous CA activity in cardiac homogenates. The IC$_{50}$ on purified CA II and cardiac homogenates was 12.4 ± 7.31µM and 60 ± 2.61µM, respectively.

Figure 10. Dose-dependent CA-inhibition by cariporide. Panel A shows typical experimental recordings of the effect of increasing concentrations of cariporide on CA II activity. Panel B shows a comparison of dose-response curves of cariporide on CA II (IC$_{50}$=12.4 ± 7.31µM) and total CA activity in cardiac homogenates (IC$_{50}$=60 ± 2.61µM).
Figure 11 shows the dose-dependency of bicarbonate transport inhibitors on CA activity. Panels A and B show experimental recordings of the effect of increasing doses of S0859 and DIDS on the rate of CO₂-induced acidification, respectively. Panels C and D show a comparison of dose-response curves for S0859 (C) and DIDS (D) on CA II and total CA activity in cardiac homogenates. For S0859, IC₅₀ values were 17 ± 8.1 μM for CA II and 64 ± 15.8 μM for cardiac homogenates. Values of IC₅₀ for DIDS were 42 ± 2.2 μM and 316.5 ± 32 μM, respectively.

Figure 12 shows the effect of increasing doses of the AQP inhibitor pCMBS on CA activity. Panel A shows the effect of increasing concentrations of the inhibitor on the CO₂-induced rate of acidification activity. Panel B shows a comparison of dose-response curves of pCMBS on CA II and cardiac homogenates. The IC₅₀ values were 63.6 ± 18.6 μM and 389.7 ± 38.6 μM, respectively. Values for IC₅₀ are given ± 95% confidence intervals.
Figure 11. Dose-dependent inhibition of CA activity by bicarbonate transport inhibitors. Panels A and B show typical experimental recordings of the effect of S0859 and DIDS respectively, on CA II activity. Panels C and D show dose-response curves of S0859 and DIDS respectively, on CA II and endogenous CA activity in cardiac homogenates. (DIDS: IC$_{50}$=42 ± 2.2μM for CA II and 316.5 ± 32μM for homogenates; S0859: IC$_{50}$=17 ± 8.1 μM for CA II and 64± 15.8 for homogenates).

The higher IC$_{50}$ values observed for each drug in the homogenates probably reflects the preferential binding to their target transporters, or the different sensitivities of the various CA isozymes expressed in heart to inhibition by these drugs. Because of the
presence of the different H\(^+\)equivalent transporters in cardiac homogenates, it is likely that the inhibitors will bind to them with greater affinity than to CA. Therefore, for obtaining the same amount of inhibition on CA II and cardiac homogenates, a higher concentration of the drug is required on the later, resulting in a higher IC\(_{50}\) value. Higher IC\(_{50}\) values in homogenates could also be the reflection of the IC\(_{50}\) of CA IV, IX and XIV, the other CA isoforms present in cardiac myocytes besides CA II (Alvarez \textit{et al.}, 2006; Scheibe \textit{et al.}, 2006).

Figure 12. Dose-dependent inhibition of CA activity by pCMBS. The figure shows dose-response curves of pCMBS on CA II (IC\(_{50}\)=63.6 ± 18.6\(\mu\)M) and total CA activity in cardiac homogenates (IC\(_{50}\)=389.7 ± 38.6\(\mu\)M).
3.2.3. Effect of membrane transport inhibitors on intracellular carbonic anhydrase activity in intact cardiac myocytes

Although, several of the membrane transport inhibitors tested inhibited CA *in vitro* (i.e. where they had direct contact with the enzyme) it was necessary to investigate whether the same drugs are able to cross the sarcolemma and inhibit intracellular CA activity in intact cardiac myocytes.

In order to assess the effect of membrane transport inhibitors on the rate of the CA-catalyzed reversible hydration of intracellular CO$_2$ in cardiac myocytes, paired experiments were performed where the time-course of change of pH$_i$ was recorded on switching from Hepes to 5% CO$_2$/HCO$_3^-$-buffered superfusate (“ON”), and then back to Hepes (“OFF”) (all solutions Na$^+$-free), in the absence and presence of the transport inhibitors. In order to confirm the presence of CA activity in cardiac myocytes, paired experiments were performed in the absence and presence of 100μM of the membrane-permeant CA inhibitor ATZ. Panel A of Figure 13 shows superimposed traces of such an experiment. In the presence of ATZ the rate of change of pH$_i$ is reduced significantly for both the “ON” and the “OFF” phases, which confirms the presence of active CA. Panel B compares the intracellular CO$_2$ hydration rate constant (k_f) values estimated from the initial change in pH$_i$ obtained on switching the superfusate. 100μM ATZ resulted in a significant reduction of k_f. This k_f value (k_f ATZ) represents an estimate of the uncatalysed rate of reversible intracellular CO$_2$ hydration.
Figure 13. Effect of ATZ on the reversible hydration of intracellular CO₂. Panel A shows superimposed traces of a typical paired experiment where the time-course of change of pH_i was recorded on switching the superfusate bathing a cardiac myocyte from Hepes to 5% CO₂/HCO₃⁻-buffered solution and back to Hepes (all solutions Na⁺ free) in the absence (control) and presence of 100μM ATZ. The rate of change of pH_i in the presence of ATZ was significantly slowed down. The corresponding kₚ values are shown in the Panel B (n=15). kₚ values were estimated from the best-fit of the kinetic algorithm to pH_i data obtained during the initial 0.2 pH_i unit drop after CO₂ addition. Circles on the traces shown in Panel A indicate the end of the fitting interval.

Switching to CO₂/HCO₃⁻ superfusate containing 30μM cariporide had no effect on the rate of intracellular CO₂-induced acidification or on the rate of alkalinisation on switching from CO₂/HCO₃⁻-buffered to Hepes-buffered superfusate (Figure 14A). This is reflected in the normalised kₚ values obtained in the presence of cariporide compared to controls (Figure 14B). kₚ was normalized to kₚ_ATZ (kₚ/kₚ_ATZ).

Similarly, DIDS (100μM; Figure 14C and 14D), S0859 (15μM; Figure 14E and 14F), or pCMBS (250μM; Figure 14G and 14H) also had no effect at the exposure times employed.
Figure 13. Effect of membrane transport inhibitors on the reversible hydration of intracellular CO₂.
Left panels show superimposed traces of typical paired experiments where the time-course of change of pH, was recorded on switching from Hepes to 5% CO₂/HCO₃⁻-buffered solution and back to Hepes (all solutions Na⁺-free). **Continue on the next page.**
Figure 13 continued. Cariporide (30µM, A), DIDS (100µM, C), S0859 (15µM, E) or pCMBS (250µM, G) had no significant effect on the rate of intracellular CO₂-induced acidification (ON) or recovery (OFF) at the concentrations and exposure times employed. Corresponding averaged normalized kᵣ (kᵣ/kᵣ_ATZ) values obtained from paired experiments are shown in the panels on the Right (B, D, F and H; n>4).

Therefore, although the transport inhibitors used inhibit CA activity in vitro, they do not affect intracellular CA activity, possibly because these drugs are membrane impermeant and therefore cannot interact with intracellular CA isoforms.
3.4. Discussion

The proposed participation of CA in H⁺-equivalent transport (Alvarez et al., 2003; Becker & Deitmer, 2007; Li et al., 2002; Loiselle et al., 2004; Sterling et al., 2002; Sterling et al., 2001a; Sterling et al., 2001b) and its role in the facilitation of intracellular H⁺ mobility (Spitzer et al., 2002; Stewart et al., 1999; Swietach et al., 2007) raises the question of whether some compounds that are known to block pHᵢ regulatory transporters do so by acting directly on the carrier molecule or indirectly by acting on an associated CA molecule.

3.4.1. Many membrane transport inhibitors affect CA activity in vitro

Experimentally, when studying the kinetics of an acid extrusion mechanism, specific inhibitors are often used selectively to block membrane transporters. For example, NHE inhibitors are used to dissect the activity of NBC (Lagadic-Gossmann et al., 1992; Leem et al., 1999). Conversely, NBC inhibitors can be used to study contributions from NHE during pHᵢ recovery from an intracellular acid-load, a process in which both transporters normally participate. It is interesting that, among the inhibitor compounds tested, only those with chemical side-groups capable of establishing hydrogen bonds or coordination bonds, affected CA in the activity assay.

3.4.1.1. Effect of Na⁺/H⁺ Exchange Inhibitors

In the present study, three specific NHE inhibitors have been tested. None of these compounds is related to a sulphonamide compound. The amiloride derivatives DMA and EIPA did not affect CA activity. In contrast, the benzoylguanidine, cariporide,
inhibited CA activity with IC$_{50}$ values in the micromolar range. Structurally, amiloride derivatives and benzoylguanidines differ in the cyclic part of their molecules and their side chemical moieties. In the case of amiloride derivatives, the cyclic nucleus of the molecule derives from pyrazine whereas, in the case of cariporide, the aromatic nucleus is a phenyl derivative. The main substitutions in the phenyl ring of the cariporide molecule are an isopropyl group and a sulphomethyl group. The latter group is capable of establishing hydrogen bonds through its two oxygen atoms. Thus, this group represents a potential candidate for interacting with the hydrogen bond system in the active site of the enzyme, and thereby affecting catalysis. One possible mode of interaction may be that the sulphomethyl group in the cariporide molecule establishes hydrogen bonds with the amino group of Thr-199, disrupting the hydrogen bond network or, alternatively, that it establishes hydrogen bonds with other residues in the protein, and hence affects its catalytic activity.

In contrast to cariporide, amiloride and its derivatives, DMA and EIPA, do not include any group in their molecules that is capable of establishing hydrogen bonds. Substitutions in the amiloride molecule include two methyl groups in the DMA molecule, and one ethyl and one isopropyl group in the EIPA molecule. Therefore, these compounds are less likely to interfere with the catalytic process.

3.4.1.2. Effect of HCO$_3^-$ Transport Inhibitors

In the case of bicarbonate transport inhibitors, both drugs tested (DIDS and S0859) inhibited CA activity. Structurally, these compounds are very different, but both include chemical groups that can potentially inhibit CA activity. DIDS is a disulphonic...
stilbene compound, and contains isothiocyanate functional groups. It has been shown that incorporating an isothiocyanate group in place of the amino group in known arylamido-sulphonamide CA inhibitors results in IC₅₀ values two orders of magnitude lower than their corresponding amines (Khobzaoui et al., 2004). Isothiocyanate groups can react with amino acid, hydroxyl, sulphydryl, tyrosyl, amino, and histydyl side chain groups forming transient adducts (Maddy, 1964). This suggests that isothiocyanate can potentially interact with the amino group of Thr-199 or interfere with H⁺ shuttling at histidines residues. Thiocyanate (SCN⁻) has also been reported to have inhibitory activity against CA, with Kᵢ values almost in the millimolar range for different CA isozymes (Eriksson et al., 1988; Ilies & Banciu, 2004b; Lindskog, 1997a; Supuran et al., 2004). This anion displaces the deep water molecule and establishes a hydrogen bond with the amino group of Thr-199.

The N-cyanosulphonamide NBC inhibitor, S0859, might inhibit CA activity by interacting at the active site of the enzyme in a similar way to that of unmodified sulphonamides. In the S0859 molecule, a CN⁻ group replaces one of the hydrogen atoms on the original sulphonamide group. Studies on the development of modified sulphonamides have shown that the presence of an inorganic anion as an N-substituent led to compounds with appreciable CA inhibitory properties (Supuran et al., 2004). The CN⁻ group in S0859 can functionally replace the sulphonamide NH⁺ group and establish a hydrogen bond with the hydroxyl group of Thr-199 or interact with the the NH group of Thr-199.

As with the unmodified sulphonamide, the oxygen atoms in the N-cyanosulphonamido group can also establish a hydrogen bond with the NH group of Thr-
199, thus potentially affecting CA-mediated catalysis. CN\(^-\) by itself is a known inhibitor of CA activity (Ilies & Banciu, 2004b; Lindahl \textit{et al.}, 1993; Lindskog, 1997a) and interacts with the active site of CA in a similar way to SCN\(^-\) (Lindahl \textit{et al.}, 1993), but with much lower \(K_i\) values (Ilies & Banciu, 2004b; Innocenti \textit{et al.}, 2005).

3.4.1.3. Effect of Aquaporin Inhibitors

The mercurial compound pCMBS, an AQP blocker, was also tested for its effects on CA activity. Although this compound is not a membrane H\(^+\) transporter inhibitor, it was chosen because it has recently been proposed that AQPs are an important route for gas molecules such as CO\(_2\) to cross cell membranes (Cooper \textit{et al.}, 2002; Endeward \textit{et al.}, 2006). Because CO\(_2\) can be reversible hydrated by CA to H\(^+\) and HCO\(_3^-\), its movement across the cell membrane is equivalent to transporting H\(^+\)-ions.

The results of the present work show that pCMBS inhibits CA activity with an IC\(_{50}\) values in the micromolar range, 64\(\mu\)M for CA II and 390\(\mu\)M for CA activity in cardiac homogenates. Thus, in addition to preventing transmembrane H\(^+\) movement by blocking CO\(_2\) membrane permeation, pCMBS may also hamper H\(^+\) generation or consumption by inhibiting the reversible hydration of CO\(_2\) mediated by CA.

Inhibition of CA activity by mercurial pCMBS might be explained in terms of the effect of Hg\(^{2+}\) on the enzyme. Hg\(^{2+}\) blocks intramolecular H\(^+\) transfer steps by binding to His-64 (Eriksson & Liljas, 1991). Crystallographic evidence (Eriksson \textit{et al.}, 1988; Eriksson & Liljas, 1991) has shown that in the Hg\(^{2+}\)-CA II complex both imidazolic nitrogens atoms in His-64 bind the metal with equal affinity, thereby eliminating the possibility for His-64 to participate in proton transfer. In addition, the common finding
that the use of mercuric ions or mercury-containing compounds (such as HgCl₂, pCMBS or 4-hydroxymercuribenzoate) in crystallography, to avoid dimerization of cysteine residues of CA II (Eriksson et al., 1988; Mangani & Liljas, 1993; Tilander et al., 1965; Xue et al., 1993) also enhances the quality of the crystal, occurs probably because mercurials block the very mobile His-64 in a fixed conformation.

3.4.2. No Effect of membrane transport inhibitors on intracellular CA activity

Taking into consideration the findings discussed above, it was important to investigate whether the membrane transport inhibitors that affected CA activity in the enzymatic assay had an effect on the enzyme within an intact cell.

Isolated cardiac myocytes were used as the physiological model for this study. Several intracellular and extracellular CA isozymes have been identified in cardiac cells (Alvarez et al., 2006; Knuppel-Ruppert et al., 2000; Purkerson & Schwartz, 2005; Scheibe et al., 2006). Intracellular CA isozymes include the soluble CA II and the sarcoplasmic reticulum (SR) membrane-bound isoforms CA IV, IX and XIV (Scheibe et al., 2006). Extracellular facing CA isozymes at the sarcolemma include the isozymes CA IV, IX and XIV (Knuppel-Ruppert et al., 2000; Scheibe et al., 2006).

Addition of the membrane transport inhibitors with in vitro CA-inhibitory activity to superfusates did not affect CA-mediated intracellular hydration of CO₂ in cardiac myocytes. This may be explained in terms of the combined effect of the pKₐ and the lipid solubility of the inhibitor. The undissociated (and hence uncharged) form of the drugs could potentially permeate via this route, but the lack of effect on the rate of hydration of
intracellular CO₂ suggests that, at least in the time-frame of our experiments, the uncharged fraction of the drugs does not permeate the sarcolemma.

In contrast to a lack of effect on intracellular CA isoforms, the activity of extracellular facing membrane-bound CA isozymes would potentially be affected by the inhibitors. In this case, the enzyme would be in direct contact with the superfusate. One physiological role for these CA isozymes is believed to be the accelerated equilibration of extracellular CO₂ and HCO₃⁻, thus facilitating transmembrane efflux of CO₂. Therefore inhibition of extracellular-facing CA activity may have consequences for transmembrane CO₂ fluxes.

The results of the present work show that the presence of membrane transport inhibitors in the superfusates had no effect on the rate of hydration or dehydration of intracellular CO₂, events which are associated with CO₂ entry and exit, respectively. It is not possible, however, to conclude that the inhibitors do not affect extracellular CA activity. The continuous provision of CO₂ in the superfusate in single cell superfusion experiments, may be sufficient maintain CO₂/HCO₃⁻ buffering at equilibrium in the extracellular environment. There will therefore be no net activity of an extracellular CA isozyme. In contrast, the effect of extracellular CA inhibition may be more readily observed under conditions where significant unstirred layers surround the cells such as in poorly-vascularised multicellular preparations.

Thus, although membrane transport inhibitors had no effect on the intracellular hydration or dehydration of CO₂ in the well superfused myocytes used in the present study, an effect on extracellular CA activity by these compounds in less well perfused tissues cannot be excluded.
The lack of effect of pCMBS and DIDS on intracellular CO₂ hydration in cardiac myocytes has some important implications. If the hypothesis that AQPs serve as a dominant route for CO₂ movement across the membrane is accepted, addition of pCMBS to the superfusates should attenuate CO₂ permeation across the sarcolemma, and thus affect intracellular CO₂ hydration kinetics. Gros and colleagues (Endeward et al., 2006) have shown that pCMBS reduces the permeability coefficient for CO₂ in red blood cells with a IC₅₀ of 0.5M. Myocardial expression of various AQP isoforms has been reported in humans, rats and mice (Butler et al., 2006). In rat heart, AQP-1, -6, -7, and -11 mRNAs were found as well as low levels of AQP-4 and -9. AQP-1 protein expression was confirmed by Western blot analysis.

The present work shows, however, that addition of 0.25mM pCMBS to superfusates had no effect on the intracellular hydration of CO₂. The Kᵢ for inhibition of the AQP-1 water pathway expressed in Xenopus oocytes has been estimated as 0.13mM (Tsai et al., 1991). Thus, pCMBS at 0.25 mM would have caused a noticeable inhibition of the AQP pathway in cardiac myocytes. It is possible, however, that the IC₅₀ for pCMBS in myocytes has a higher value. Unfortunately, it was not possible to use higher concentrations because of an apparent toxic effect of pCMBS on cardiac myocytes.

Nevertheless, the results of the present work suggest that partial block of AQPs has no consequences on the kinetics of reversible CO₂ hydration within the cell. This in turn suggests that passive permeation of CO₂ across the lipid bilayer rather than through AQPs is an important route for CO₂ movement into or out of cardiac myocytes.
Gros and colleagues (Endeward et al., 2006) reported that 100µM DIDS decreased CO₂ permeation by ~66% and suggest that this effect occurs by an action on both AQPs and an additional unknown permeation pathway in red blood cells.

The results obtained in intact cardiac myocytes in the present study show that 100µM DIDS had no effect on the kinetics of reversible intracellular hydration of CO₂. Since it has been proposed that DIDS inhibits AQPs, the lack of effect of DIDS on CO₂ reversible hydration again supports the idea that the AQP pathway is not rate limiting for CO₂ permeation in cardiac myocytes, confirming the findings with pCMBS.

In conclusion, the present work shows that several membrane transport inhibitors of H⁺-equivalent transport affect CA activity when they are in direct contact with the enzyme. Under physiological conditions, however, these compounds cannot cross biological membranes, therefore preventing their interaction with intracellular CA isozymes. Extracellular-facing CA isozymes, however, are a potential target for these drugs. Although, in superfused single cell experiments, extracellular CA-isozyme activity is unlikely to facilitate CO₂ transfer across the sarcolemma, in cell clusters or tissues where the extracellular space between cells is less well perfused, these enzymes are likely to become important for facilitating CO₂ movement. Therefore, membrane transport inhibitors with additional extracellular CA inhibitory activity, such as cariporide, which has been used in ischaemia-reperfusion studies (Avkiran & Marber, 2002; Scholz et al., 1993; Theroux et al., 2000; Wajima et al., 2004), may have consequences on CO₂ washout and therefore on post-ischaemic pH recovery. Such consequences would be independent of membrane transport inhibition and would therefore represent a novel pharmacological effect of these drugs.
CHAPTER 4

EFFECT OF CARBONIC ANHYDRASE ACTIVITY ON SARCOLEMMLAL H⁺-
EQUIVALENT EXTRUSION

4.1. Introduction

In the event of an intracellular acid load, cardiac pHᵢ is normally restored by two sarcolemmal acid extrusion mechanisms, the Na⁺-H⁺ exchange (NHE) and the Na⁺-HCO₃⁻ co-transport (NBC). The activity of these Na⁺-dependent sarcolemmal acid extruders is allosterically controlled by intracellular [H⁺], being enhanced at low pHᵢ (Dart & Vaughan-Jones, 1992; Lagadic-Gossmann et al., 1992).

Efficient function of acid/base membrane transporters depends on an appropriate supply and removal of substrates from their binding sites, and also on an adequate matching of bulk cytosolic [H⁺] to that surrounding any allosteric control sites on the protein. For HCO₃⁻ transporters, substrate supply and removal may be hampered by the slow kinetics of spontaneous equilibration of CO₂ and HCO₃⁻, two main components of carbonic buffering. In cells, the enzyme carbonic anhydrase (CA) accelerates the rate of attainment of equilibrium of the buffering reaction (Chegwidden et al., 2000; Geers & Gros, 2000; Maren, 1967). At least 13 active mammalian CA isoforms have been identified, varying in activity and cellular localization. Some of these isoymes are cytosolic (CA I, II, III, VII, XIII), others are membrane-bound (CA IV, IX, XII, XIV, XV), CA VA and CA VB are mitochondrial isoforms whilst CA VI is secreted with saliva and milk.
Accelerated attainment of equilibrium between CO$_2$ and HCO$_3^-$ may also facilitate pH$_i$ regulation in other ways. High levels of intracellular pH buffers (Vaughan-Jones et al., 2002; Zaniboni et al., 2003), that protect against pH disturbances, reduce H$^+$-ion mobility by more than two orders of magnitude (Vaughan-Jones et al., 2002). The reason for this is that many buffer molecules, in particular proteins, have low (sometimes nil) mobility. High buffering capacity will only allow a small fraction of H$^+$-ions to diffuse freely. A consequence of this reduction in mobility is an impediment of H$^+$ delivery to acid-extruders such as NHE, with subsequent development of pH$_i$ non-uniformity during acid-extrusion (Swietach & Vaughan-Jones, 2005). Cells, however, posses a significant fraction of lower molecular weight buffers, which salvages diffusive H$^+$-coupling between bulk cytoplasm and the H$^+$ transporters at the surface membrane.

Such 'mobile' buffers will include low molecular weight endogenous histidyl dipeptides (Vaughan-Jones et al., 2002) and also CO$_2$/HCO$_3^-$ buffer (Spitzer et al., 2002; Stewart et al., 1999). In the case of the latter, efficient facilitation of H$^+$ mobility depends on CA activity (Spitzer et al., 2002; Stewart et al., 1999; Swietach et al., 2007). Under physiological conditions, and at resting pH$_i$, carbonic buffer (5% CO$_2$/22mM HCO$_3^-$) at equilibrium accounts for around half of the total intracellular buffering capacity (β_{tot}) of a cardiac myocyte (Leem et al., 1999).

Previous studies on the heart have suggested a modulatory role for CA in pH$_i$ regulation (Lagadic-Gossmann et al., 1992; Vandenberg et al., 1996). In ferret heart, CA inhibitors have been shown to slow pH$_i$ recovery during post-ischaemic reperfusion (Vandenberg et al., 1996). These findings were explained in terms of a slowing of the rate of CO$_2$ efflux and a reduction in NBC-mediated HCO$_3^-$ influx across the sarcolemma.
of cardiac muscle cells. Other studies, this time on isolated guinea-pig myocytes (Lagadic-Gossmann et al., 1992; Leem & Vaughan-Jones, 1998) have shown that CA inhibition with acetazolamide (ATZ) slows the rate of intracellular CO₂ hydration, assessed by the rate of pH₁ change following addition of CO₂ in the bathing medium. This finding suggests that the rate of hydration of intracellular CO₂, and subsequent pH₁ acidification, is limited by the CO₂ hydration reaction catalyzed by CA rather than membrane CO₂ permeation.

Functional coupling involving both extracellular and intracellular CA isoforms and a membrane transporter such as AE, NHE and NBC has been hypothesised to occur physiologically in cells such as erythrocytes, renal tubular cells and epidydimal cells (Pastor-Soler et al., 2005; Romero et al., 2004). For example, the co-localisation of NBCe1, CA II, and CA IV in epidydimal proximal cells (Jensen et al., 1999a; Jensen et al., 1999b; Kaunisto et al., 1995; Kaunisto et al., 1990; Parkkila et al., 1993) has led to the proposal of a functional coupling of these two proteins to enhance the reabsortion of HCO₃⁻ (Pastor-Soler et al., 2005).

Recent work on heterologous transfection systems has even suggested a physical association between certain CA isoforms (e.g. CA II, IV) and membrane H⁺-equivalent transporters (AE1, NHE-1 and NBCe-1) (Alvarez et al., 2003; Li et al., 2002; Sterling et al., 2001a; Sterling et al., 2001b). The physical and functional association between CA and membrane H⁺-equivalent transporters was first described for the bicarbonate-transporting AE1 and CA isoforms II and IV (Sterling & Casey, 2002; Sterling et al., 2001b; Vince et al., 2000; Vince & Reithmeier, 1998; Vince & Reithmeier, 2000), and the term "bicarbonate transport metabolon" was coined to describe this relationship. The term
'metabolon' has been used to describe a supra-molecular complex of sequential enzymes within a metabolic pathway (Ovadi & Srere, 2000; Srere, 1987; Srere, 2000). The close proximity of enzymes responsible for catalyzing consecutive steps of a metabolic pathway may be used to increase the metabolic flow by assuring the channeling of intermediates (Ovadi & Srere, 2000; Srere, 2000). Thus, similarly, a bicarbonate transport metabolon may result in facilitated HCO₃⁻ transport across AE. Intracellular CA (e.g. CAII) may streamline the rate of supply of HCO₃⁻ (generated from CO₂) at the substrate site and extracellular CA (e.g. CAIV) may remove HCO₃⁻ from the transporter, once the substrate has been transferred across the membrane. CA may thereby maintain a steep outward HCO₃⁻ gradient which would otherwise be shallower with slower carbonic buffer equilibration kinetics.

CA isoforms may also be useful in rapidly bringing carbonic buffer closer to equilibrium for the purpose of facilitating H⁺ mobility for transporters using H⁺-ions as substrate or allosteric regulator (Vaughan-Jones et al., 2002). This concept was tested in API cells transfected with CAII and the bicarbonate-independent transporter, NHE-1 (Li et al., 2002). This study demonstrated that the intracellular C-terminal domain of NHE-1 can bind CA II and that, when both molecules are expressed in a heterologous system, the latter can significantly stimulate the activity of the transporter. It was also shown that NHE-1-mediated recovery of pHᵢ following an acid load was slowed in the presence of 100µM ATZ. Since hydration of CO₂ produces H⁺, the proposed role for CA II in this particular case was hypothesized to be the facilitation of H⁺ supply to NHE-1 for extrusion, which would otherwise be impaired by slow diffusion from bulk cytosol.
A direct interaction between NBCe1 and intra- and extracellular CA has also been demonstrated (Alvarez et al., 2003). It was observed that co-expression of NBCe1, CA IV and CA II in HEK293 cells resulted in binding of CAIV and CAII to extra- and intracellular sites on NBC, respectively. That study also showed that NBCe1-mediated flux in this heterologous transfection system was dependent on CA activity. There is some controversy, however, about the extent to which CA can facilitate NBC activity.

Recent work (Lu et al., 2006) has shown that injecting recombinant human CA II into Xenopus oocytes expressing NBCe1-A does not enhance HCO$_3$ transport, measured in terms of the NBC current (I$_{NBC}$). While CA II accelerated the intracellular hydration of CO$_2$, it had no effect on I$_{NBC}$. Addition of etoxzolamide (ETZ), a membrane-permeant CA inhibitor, prevented the effect on intracellular CO$_2$ hydration without affecting I$_{NBC}$. Contrary to these findings, using a similar experimental approach, Becker and Deitmer (Becker & Deitmer, 2007) found that NBC activity was enhanced by the catalytic activity of CA II. The activity of NBCe1-A expressed in Xenopus oocytes was quantified by measuring I$_{NBC}$, and also the rate of change of intracellular [H$^+$] and [Na$^+$] following an acid load. The study showed that injecting CA II significantly increased NBCe1-A activity and that ETZ reversed this effect.

So far, the functional and/or physical association involving H$^+$-equivalent membrane transporter and different CA isozymes in a “transport metabolon” arrangement has only been shown in transfection cellular systems. It is not yet established if CA can influence the activity of membrane H$^+$ transport in an intact wild-type cell.
In order to assess the role of CA on membrane H⁺-equivalent transport under physiological conditions, in the present study, rat ventricular myocytes were used as a model of an intact cellular system to investigate the role of intracellular and extracellular CA on NHE and NBC activity.
Chapter 4 - Effect of carbonic anhydrase activity on sarcolemmal H⁺-equivalent extrusion

4.2. Methods

4.2.1. General methods

The intracellular pH of isolated rat ventricular myocytes was measured using the dual emission pH-sensitive fluorescent dye carboxy-SNARF-1. Full details of the cell isolation procedure, epifluorescence measurements, and calibration are described in Chapter 2.

4.2.2. Drugs

NHE and NBC inhibitors. Cariporide (NHE inhibitor) and S0859 (NBC inhibitor) were kindly provided by Sanofi Aventis (Germany) and were added to solutions just prior to use (from stock in aqueous solution). Dimethylamiloride (DMA; NHE inhibitor) was purchased from Sigma (Sigm-Aldrich). Doses of 30µM for cariporide or DMA and 15µM for S0859 were chosen since they had been shown effectively to inhibit NHE (cariporide; Scholz et al, 1995, DMA; (Loh et al., 1996) or NBC (S0859) (Ch’en et al., 2008) without affecting other aspects of cell function such as electrically-evoked contraction.

CA inhibitors. ATZ and the recently developed compound 14v (1-[5-sulphamoyl]-1,3,4-thiazol-2-y1-(aminosulphonyl-4-phenyl)]-2,6-dimethyl-4-phenyl-pyridinium perchlorate) (Alvarez et al., 2003; Supuran et al., 2004) were used in this study. ATZ is an uncharged, membrane-permeant sulphonamide and will inhibit both intra- and extracellular CA isoforms. 14v is a positively-charged heterocyclic sulphonamide that will only inhibit membrane-associated CA isoforms with active sites oriented towards the extracellular
space (Supuran et al., 2004). The affinity of this compound for CA IV and CA II is in the nanomolar range (Scozzafava et al., 2000; Supuran et al., 2004). Also, the potent membrane permeable CA inhibitor ETZ was used in some experiments.

4.2.3. CA activity assay

Details of the CA enzymatic assay and the quantification of the first-order CO₂ hydration rate constant (kₑ) have been fully described in the General Methods chapter (Chapter 2). In order to asses the possible role of intracellular and extracellular CA activity in facilitating NHE- and NBC-mediated H⁺-equivalent flux, CA was differentially inhibited using a combination of ATZ (a membrane-permeant) and 14v (a membrane-impermeant) inhibitors. First, it was necessary to determine the inhibitory potency of 14v on CA activity of cardiac homogenates, to test whether the drug is active on cardiac CA isoforms. CA activity was assayed in cardiac homogenates using a 14v concentration previously used for cardiac myocytes (100nM; Alvarez et al., 2003). The effect of 14v was compared with ATZ at the same concentration. To determine the IC₅₀ for 14v, a dose-response analysis was performed on purified CA II and on total CA activity in ventricular homogenates, and the IC₅₀ value has been determined from a four parameter sigmoidal fit to the data. Protein content in the homogenates was quantified spectrophotometrically using the Bradford assay (QuickStart, BioRad).

4.2.4. NHE and NBC-mediated acid efflux measurement

Acid-equivalent efflux through NBC (JNBC) and NHE (JNHE) was quantified by measuring pHᵢ-recovery following an intracellular acid-load, achieved by pre-pulsing the
cells with solutions containing 20mM NH$_4$Cl for 3-4 minutes (Roos & Boron, 1981). An equimolar amount of NaCl was omitted in NH$_4$Cl-containing solutions in order to maintain constant osmolarity.

Acid efflux (J^H) was calculated using the following equation:

$$J^H = -\beta_{tot} \times dpH/dt$$

where dpH/dt is the rate of change of pH$_i$ driven by transmembrane acid-equivalent flux and β_{tot} is total intracellular buffering power in the rat ventricular myocyte.

Three protocols were performed to measure J_{NHE}.

(i) Cells were superfused in Hepes-buffered normal Tyrode to inactivate NBC, i.e. $J^H = J_{NHE}$; (Figure 3A)

(ii) Cells were superfused in CO$_2$/HCO$_3^-$-buffered Tyrode in the presence or absence of 30µM DMA. Recovery of pH$_i$ in the presence of CO$_2$/HCO$_3^-$-buffered Tyrode is mediated by both NHE and NBC ($J^H = J_{NBC} + J_{NHE}$; Figure 3B). J_{NHE} can be isolated by subtracting the acid efflux in the presence of DMA ($J^H = J_{NBC}$ only; Figure 3C) from total acid efflux ($J^H = J_{NBC} + J_{NHE}$).

(iii) Cells were superfused with CO$_2$/HCO$_3^-$-buffered Tyrode plus 15µM S0859, a selective inhibitor of NBC (Ch’en et al., 2008), i.e. $J^H = J_{NHE}$; (Figure 4A)

To measure J_{NBC}, cells were superfused with CO$_2$/HCO$_3^-$-buffered Tyrode in the presence of either 30µM DMA or 30µM cariporide ($J^H = J_{NBC}$; $J_{NHE} = 0$; Figures 3C and 5A, respectively).

To eliminate all CA activity (both intracellular and extracellular), 100µM ATZ or 100µM ETZ was added to superfusates. To eliminate only extracellular CA activity, 100nM 14v was used.
4.2.5. Measurement of intracellular reversible CO₂ hydration in intact myocytes

Details of measurement of intracellular CO₂ hydration and dehydration, and quantification of the intracellular first-order hydration rate constant (k_{fi}) have been fully described in the General Methods chapter (Chapter 2).

The rate of initial pHₐ change on switching the superfusate from Hepes-buffered to CO₂/HCO₃⁻-buffered Tyrode ("ON") and then back to Hepes ("OFF") was used to assess the degree of CA catalysis. 30µM cariporide plus 15µM S0859 were added to the superfusates to prevent sarcolemmal acid extrusion which would otherwise affect the initial pHₐ change. As has been shown in Chapter 3 of this thesis, although cariporide and S0859 at these concentrations can partially inhibit CA activity in vitro, neither of these drugs affects the reversible intracellular hydration of CO₂ in single cardiac myocytes most probably because of its inability to cross the sarcolemma and have direct contact with the enzyme. Therefore, inhibition of membrane transport using these drugs can be achieved without affecting cytosolic CA activity. We have also shown that any possible effects of cariporide and S0859 on extracellular CA activity do not affect the kinetics of pHₐ-change due to transmembrane CO₂ flux in well-superfused isolated cardiac myocytes.

To assess the effect of intracellular and extracellular CA inhibition, switching between Hepes and CO₂/HCO₃⁻-buffered solution was carried out in the presence of 100µM ATZ or 100nM 14v. Cells were superfused with drug-containing solution for at least 2 minutes before adding CO₂-containing buffer. Switching back from CO₂/HCO₃⁻-buffered to Hepes-buffered superfusates was carried out in the presence of the drug.
4.3. Results

4.3.1. Effect of the membrane-impermeable inhibitor 14v on CA activity

Figure 1A shows superimposed experimental recordings comparing the effect of 100nM of 14v (green) and 100nM ATZ (red) on the rate of acidification induced by CO₂ addition cardiac homogenates. Both drugs reduced the rate significantly, down to the level of uncatalysed CO₂ hydration (grey). CA activity, expressed as k_f is shown in Figure 1B. Addition of ATZ or 14v resulted in k_f values similar to the uncatalysed values. k_f was normalised to final protein concentration in the assay (per mg/ml). Figure 1C shows a comparison of the dose-response curves for CA II and cardiac homogenates. The IC_{50} for CA II and CA activity in the homogenates was 0.6 and 2.4nM, respectively. This IC_{50} difference between cardiac homogenates and CA II may be a consequence of the mixture of CA isozymes present in cardiac myocytes (Alvarez et al., 2006; Scheibe et al., 2006). For example, CA IV and CA IX have shown higher K_i values for sulphonamides than CA II (Supuran, 2004). Since these isozymes are present in cardiac myocytes, it is possible that the IC_{50} values obtained in the present study reflect to some extent the values of the isozymes with less sensitivity to inhibition by sulphonamides.
Figure 1. Assay of CA activity in ventricular myocyte lysates. Panel A shows a time-course of change of pH after CO₂ addition to cardiac homogenate (---), homogenate + 100nM ATZ (----), homogenate + 100nM “14v” (-----) and to Hapes-buffered solution. B. CA activity, expressed as k_f, was significantly reduced in the presence 100nM ATZ (■) or 100nM “14v” (■) resulting in complete inhibition in both cases. C. Dose-response curve for 14v on the activity of CA II (●) and cardiac homogenates (○). IC₅₀ values of 0.6±0.08 and 2.4±0.62 nM for CA II and CA activity in cardiac homogenates respectively were determined from a four parameter sigmoidal fit to data. Values for IC₅₀ are given ± 95% confidence intervals.
4.3.2. Effect of CA inhibitors on intracellular reversible CO\textsubscript{2} hydration rates

Figure 2A shows a time-course of the CO\textsubscript{2}-induced change of pH\textsubscript{i} upon myocyte superfusion with HCO\textsubscript{3}/CO\textsubscript{2}-buffered Tyrode and subsequent switching back to Hepes-buffered Tyrode under control conditions and in the presence of ATZ. Under control conditions, rapid changes in pH\textsubscript{i} were observed when switching between Hepes and CO\textsubscript{2}/HCO\textsubscript{3}-buffered superfusates. In the presence of ATZ, changes in pH\textsubscript{i} were significantly slowed. Figures 2B and 2C superimpose, on an expanded time-scale, the changes in pH\textsubscript{i} on CO\textsubscript{2} addition or removal, in the presence and absence of CA inhibitor drugs. Addition of ATZ significantly slowed these pH\textsubscript{i} changes. In contrast, the extracellular CA inhibitor 14v had no effect on pH\textsubscript{i} kinetics. The rate of intracellular reversible CO\textsubscript{2} hydration, expressed as k_f, is shown in Figure 3D. The k_f value in the presence of ATZ (k_f \textsubscript{ATZ}) was taken as an estimate for the uncatalyzed reaction rate. The extracellular CA-inhibitor 14v (100nM) had no significant effect on the estimates of k_f.

These results suggest that an intracellular CA isoform catalyses the reversible CO\textsubscript{2} hydration in the cytoplasm of cardiomyocytes as proposed previously (Lagadic-Gossmann \textit{et al.}, 1992; Leem & Vaughan-Jones, 1998). In contrast, extracellular CA activity appears not to be required, at least not either for membrane permeation of CO\textsubscript{2} or its intracellular hydration in well perfused single cells.
Figure 2. CA activity in intact ventricular myocytes
A. Time-course of change of pH after switching from Hepes-buffered solution to CO₂/HCO₃⁻-buffered solution and back to Hepes. The acid load and recovery were carried out in the presence of 30μM cariporide and 15μM S0859 to prevent acid extrusion on NHE and NBC, respectively. The figure shows a typical experiment in which after addition of ATZ the rate of acid load and recovery is significantly reduced. Similar results were obtained using Na⁺-free superfusates to block sarcolemmal acid extrusion.

B. Comparison of the time-courses of intracellular acidification after switching from Hepes-buffered to CO₂/HCO₃⁻-buffered solution (ON) under control conditions (---), 100μM ATZ (---), and 100nM of 14v (---).

C. Comparison of the time-courses of recovery of pH after switching from CO₂/HCO₃⁻-buffered to Hepes-buffered solution (OFF) under control conditions (---), 100μM ATZ (---), and 100nM of 14v (---).

D. CO₂ kᵣ from the CA-catalysed reaction. Addition of ATZ resulted in a significant slowing down of the forward (■) and reverse (□) reactions. The extracellular CA inhibitor 14v resulted in no change in kᵣ calculated either from ON or OFF.
4.3.3. Effect of CA inhibitors on sarcolemmal acid efflux

4.3.3.1. Role of CA in NHE-mediated acid extrusion

The effect of CA activity on NHE-mediated acid efflux (J_{NHE}) was investigated. As mentioned in the Methods section, J_{NHE} was measured using three approaches. The first approach is illustrated in Figure 3A. Recovery of pH_i from an intracellular acid load in Hepes-buffered superfusate (nominally CO$_2$-free) is mediated by NHE ($J_H = J_{\text{NHE}}$). Providing pCO$_2$ in the Hepes-buffered solution is close to zero, CA will be inactive because of the absence of substrate.

The second approach includes Figures 3B and 3C, and consists of an indirect method to measure J_{NHE} in the presence of carbonic buffer, where CA will be active. Figure 3B shows a typical experimental recording performed in CO$_2$/HCO$_3^-$-buffered Tyrode, where recovery of pH_i is known to be mediated by both NHE and NBC ($J_H = J_{\text{NBC}} + J_{\text{NHE}}$; Leem et al., 1999). Figure 3C also shows recovery of pH_i in CO$_2$/HCO$_3^-$-buffered Tyrode, but in the presence of 30μM DMA to inhibit NHE. Under these conditions, pH_i-recovery is mediated by NBC only ($J_H = J_{\text{NBC}}$). J_{NHE} in the presence of carbonic buffer can then be estimated by subtracting the acid efflux in the presence of DMA ($J_H = J_{\text{NBC}} + J_{\text{NHE}}$) from total acid efflux ($J_H = J_{\text{NBC}}$).

Figure 3D compares the pH_i-dependence of J_{NHE} in Hepes, the dependence of combined $J_{\text{NBC}} + J_{\text{NHE}}$, and the pH_i-dependence of J_{NBC} (pH_i range 6.6-7.25). These results were obtained from experiments similar to those illustrated in Figures 3A, 3B and 3C. A comparison of J_{NHE} obtained experimentally in Hepes-buffered and in CO$_2$/HCO$_3^-$-buffered Tyrode is shown in Figure 3E. Over the pH_i range investigated, J_{NHE} is similar in the presence and absence of CO$_2$/HCO$_3^-$ buffer. This suggests that, assuming that CA is inactive when myocytes are superfused with Hepes-buffered solution, CA plays no
role in facilitating NHE activity. To investigate whether there is some residual CA activity that can be affecting NHE in Hepes, additional experiments were performed in which recovery of pH_i in Hepes-buffered Tyrode was recorded in the presence and absence of $100\mu M$ ATZ. As shown in Figure 4A, ATZ had no effect on NHE-mediated acid extrusion, ruling out the possibility of NHE facilitation by residual CA activity. The third approach for assessing J_{NHE} is illustrated in Figure 4B. This shows the effect of $100\mu M$ ATZ on pH_i-recovery from an acid load induced by a $20mM$ ammonium pre-pulse. The experiment was performed in CO_2/HCO_3^--buffered Tyrode containing $15\mu M$ S0859 to inhibit NBC. As has been shown in Chapter 3, although this concentration of S0859 could partially inhibit any extracellular CA activity, it will exert no effect on the activity of intracellular CA isozymes. Since the intracellular CA isoform, CA II, has been suggested to facilitate NHE-mediated acid extrusion, thus it is unlikely that S0859 will affect NHE by inhibiting cytosolic CA. It has also been shown that S0859 has no direct effect on NHE activity in doses up to $30\mu M$ (Ch'en et al., 2008). Therefore, S0859 can be safely used without any inhibitory effects on NHE or intracellular CA in intact myocytes. As shown in Figure 4B, ATZ had no effect on NHE-mediated recovery of pH_i. Figure 4C plots J_{NHE} as a function of pH_i and shows that inhibition of CA with $100\mu M$ ATZ had no effect on J_{NHE}.

Thus, the fact that similar results were obtained on J_{NHE} in the presence or absence of carbonic buffer or in the presence of carbonic buffer plus ATZ and S0859, suggests that CA has no role facilitating acid extrusion on NHE in intact cardiac myocytes.
Figure 3. Indirect assessment of the effect of CA activity on NHE H⁺-equivalent flux. A. Experimental recording of NHE-mediated recovery of pHᵢ following and NH₄⁺-induced intracellular acid load in Heps-buffered superfusate. B. Recovery of pHᵢ mediated by NHE and NBC in CO₂/HCO₃⁻-buffered Tyrode. C. Recovery of pHᵢ mediated by NBC obtained in CO₂/HCO₃⁻-buffered Tyrode plus 30μM DMA. D. Comparison of J_{NHE} in Heps (○; n=17), and J_{NBC}+J_{NHE} (●; n=15) and J_{NBC} (○; n=10) in CO₂/HCO₃⁻-buffered superfusate over the pHᵢ range 6.6-7.25 obtained from data sets illustrated in 3A, 3B and 3C. E. Comparison of J_{NHE} obtained experimentally in Heps-buffered solution (●) and the estimated
Chapter 4 – Effect of carbonic anhydrase activity on sarcolemmal H⁺-equivalent extrusion

\(J_{\text{NHE}} \) in CO₂/HCO₃⁻-buffered Tyrode (●). Over the whole pH range investigated, 6.6-7.25, \(J_{\text{NHE}} \) had similar values in the presence and absence of CO₂/HCO₃⁻ buffer.

A.

B.

C.

Figure 4. Direct assessment of the effect of CA activity on NHE H⁺-equivalent flux. A. Superimposed experimental recordings of NHE-mediated recovery of pH in Hepes-buffered superfusate +/-100μM ATZ following an NH₄⁺-induced intracellular acid load. ATZ had no effect on the time-course of pH-recovery. B. Superimposed traces of NHE-mediated recovery of pH in CO₂/HCO₃⁻-buffered superfusate plus 15μM S0859 +/- 100μM ATZ. C. \(J_{\text{NHE}} \) +/- 100μM ATZ as a function of pH. Addition of 100μM ATZ to the superfusate resulted in flux values similar to control.
4.3.3.2. Role of CA in NBC-mediated acid extrusion

Initial evaluation of NBC-mediated pH\textsubscript{i} recovery from an acid-load was carried out in CO\textsubscript{2}/HCO\textsubscript{3}-buffered Tyrode, plus 30μM cariporide to inhibit NHE (Figure 5A). Recovery of pH\textsubscript{i} appeared to be similar in the absence or presence of CA activity (+/- ATZ). When, however, NBC-mediated acid efflux (J\textsubscript{NBC}) is plotted against pH\textsubscript{i}, in the presence and absence of CA activity (Figure 5B), there appeared to be a trend, whereby ATZ reduced NBC activity, especially towards higher values of J\textsubscript{NBC} (pH\textsubscript{i} range 6.3-6.6). Nevertheless, over most of the pH\textsubscript{i} range tested, the reduction of NBC activity was not statistically significant. Therefore, similar experiments were performed under conditions where of J\textsubscript{NBC} was enhanced before addition of ATZ.

Figure 5. Effect of CA inhibition on NBC H+-equivalent flux. A. Superimposed traces of NBC-mediated recovery of pH\textsubscript{i} after an intracellular acid load +/- 100μM ATZ. 30μM cariporide was used to inhibit NHE activity. B. J\textsubscript{NBC} as a function of pH\textsubscript{i}. At a given pH\textsubscript{i} value, J\textsubscript{NBC} showed a tendency towards lower values in the presence of ATZ (n=8-26; *p<0.05)
Cardiac NBC, which in part is electrogenic (up to 60% of total J_{NBC} at pH$_i$ 7.05), can be accelerated by depolarising the membrane potential (Yamamoto et al., 2005). Experiments were performed under conditions of 10-fold elevated superfusate [K$^+$] to depolarize the cardiac myocyte membrane potential to about -25mV (Figure 6A) (Yamamoto et al., 2005). A membrane potential positive to rat cardiac electrogenic NBC equilibrium potential (at pH$_i$ 7.05 $E_{NBC} = -98$mV) favours acid extrusion (i.e. HCO$_3^-$ influx). Indeed, in high [K$^+$] media, J_{NBC} is raised 3.4-fold over the pH$_i$ range 6.40-6.85 (Figure 5B vs 6B). The addition of ATZ now caused a significant reduction in J_{NBC} by 51±2% over all of the pH$_i$ range examined (Figure 6B).

It is important, however, to take into consideration that, although 30µM cariporide would not affect intracellular CA activity as has been shown in Chapter 3, partial inhibition of extracellular CA activity may influence the result. Since it has been proposed that J_{NBC} is enhanced by the activity of extracellular as well as intracellular CA isoforms (Alvarez et al., 2003), it might be possible that cariporide affects NBC activity by acting on extracellular CA isozymes. This could result in partial inhibition of CA activity, and thus NBC. The subsequent inhibitory effect of ATZ on NBC would therefore be reduced, leading to an underestimate of the contribution of CA to J_{NBC}. In order to investigate this possibility, a different set of experiments under high [K$^+$] conditions was carried out using 30µM DMA instead of cariporide. The results presented in Chapter 3 of this thesis showed that DMA has no effect on CA II activity or on endogenous cardiac CA activity in tissue homogenates. Therefore no inhibition of extracellular CA activity would be expected in isolated cardiac myocytes. Figure 6C shows a typical experimental recording of the effect of ATZ on NBC-mediated pH$_i$
recovery using 30µM DMA in the superfusates. Figure 6D compares \(J_{\text{NBC}} \) in the presence and absence of ATZ using DMA to inhibit \(J_{\text{NHE}} \). ATZ resulted in an average reduction of 51±4% in \(J_{\text{NBC}} \) over the pH range 6.65-7.25, which is consistent with the results obtained in the presence of 30µM cariporide. Thus, regardless of the NHE inhibitor used (cariporide or DMA), blocking CA activity with ATZ caused a ~50% reduction of \(J_{\text{NBC}} \).

A final question is whether ATZ has a direct inhibitory effect on NBC activity, independent of its inhibitory effect on CA. Unfortunately, in our experimental system, it is not possible to discriminate between the inhibitory effects of ATZ on CA and a possible direct effect on NBC. Both, Becker and Deitmer (Becker & Deitmer, 2007) and Boron and collaborators (Lu et al., 2006), however, have shown recently that ETZ, another potent membrane-permeant sulphonamide CA inhibitor (with the same active chemical group), has no effect on NBCel activity expressed in *Xenopus* oocytes, provided it is expressed in the absence of CA II. This indicates that ETZ exerts no direct inhibitory effect on the transporter. Therefore, in the present work the effect of ETZ on cardiac NBC activity was evaluated.

Figure 6E compares typical experimental recordings of NBC-mediated recovery of pH. NHE was blocked with 30µM DMA, and NBC activity was enhanced by elevating \([K^{+}]_0\) to 45mM. In the presence of 100µM ETZ, recovery of pH was again significantly slowed. Figure 6F compares \(J_{\text{NBC}} \) as a function of pH with and without ETZ. Over the pH range measured (6.7-7.15), ETZ caused an average reduction of 45±3% on \(J_{\text{NBC}} \) which is similar to the inhibition obtained in the presence of ATZ. Since ETZ does not directly inhibit electrogenic NBC activity, the data presented here suggest that inhibition of NBC activity by ATZ and ETZ is secondary to inhibition of CA.
Figure 7 shows that, when plotting J_{NBC} (obtained using cariporide or DMA) in the presence of CA inhibition (ATZ or ETZ) versus control J_{NBC}, a constant fractional inhibition by the sulphonamides is observed. For low J_{NBC}, in the range from ~0.5 to 2 mM min$^{-1}$, inhibition of acid extrusion is not statistically significant, even though the trend was clear. For larger values of J_{NBC} the inhibition by ATZ or ETZ is clearly significant. At both, low and high J_{NBC} the trend towards inhibition is the same at ~50%. Thus, the facilitation of NBC activity by CA is likely to be constant, regardless of the H$^+$-equivalent flux carried by the transporter.
Chapter 4 – Effect of carbonic anhydrase activity on sarcolemmal H⁻-equivalent extrusion

Figure 6. Effect of CA inhibition on NBC H⁻-equivalent flux at [K⁺]₀ = 45mM. A. Superimposed traces of NBC-mediated pHᵢ-recovery ([K⁺]₀ = 45mM) +/- 100µM ATZ. Elevated [K⁺]₀ has been shown previously to double NBC flux (Yamamoto et al, 2005). 30 µM cariporide was used to inhibit NHE activity. B. ATZ caused a significant reduction by 51 ± 2% of NBC-mediated flux (n=3-12, *p<0.05, **p<0.01, ***p<0.001). C. Superimposed experimental recordings of NBC-mediated recovery of pHᵢ +/- 100µM ATZ using 30µM DMA to inhibit NHE-mediated acid extrusion. D. ATZ caused an average reduction of 51 ± 4% on JNBC over most of the pHᵢ range investigated of 6.6-7.25 (n=3-20, *p<0.05). E. Superimposed experimental traces of NBC-mediated recovery of pHᵢ +/- 100µM ETZ using 30µM DMA to inhibit NHE activity. F. The presence of ETZ in the superfusates caused an average reduction by 45± 3% on JNBC (n=7, *p<0.05).
Figure 7. CA contribution to NBC activity. J_{NBC} data in the presence of the CA inhibitors ATZ and ETZ is shown as a function of the uninhibited J_{NBC} in order to illustrate the degree of contribution of CA to J_{NBC}. Data taken from Figure 5B (○), Figure 6B (●), Figure 6D (○) and Figure 6F (●). Inhibition of CA caused an averaged reduction of ~50% in J_{NBC} at low and high flux values. The dotted trace represents the identity line.
To investigate the site of CA activity, responsible for facilitating J_{NBC}, NBC-mediated pH$_i$ recovery (measured using either cariporide or DMA) was evaluated in high [K$^+$], CO$_2$/HCO$_3^-$-buffered Tyrode containing 100nM 14v, a membrane-impermeant CA inhibitor (Figure 8A and 8C). Under these conditions, J_{NBC} was not affected by inhibition of extracellular CA (Figure 8B and 8D). This indicates that extracellular CA activity is not required for full activity of NBC.

Figure 8. Effect of the extracellular CA inhibitor 14v on NBC H$^+$-equivalent flux at [K$^+$]$_0$ = 45mM.
A. Superimposed traces of NBC-mediated recovery of pH$_i$ +/- 100nM of the extracellular CA inhibitor 14v using 30μM cariporide to inhibit NHE activity.
B. Plotting J_{NBC} as a function of pH$_i$ shows that addition of 14v had no effect on NBC-mediated acid efflux in the presence of cariporide over the whole pH$_i$ range examined.
C. Superimposed experimental traces of NBC-mediated recovery of pH$_i$ +/- 100nM 14v using 30μM DMA to inhibit NHE.
D. 14v had no effect on J_{NBC} over the whole pH$_i$ range investigated in the presence of DMA.
4.4. Discussion

In the present work, the physiological relevance of a functional relationship involving CA and the two major acid extruders in cardiac myocytes, NHE and NBC, was investigated. The results show that while CA activity has no effect on NHE-mediated H⁺ extrusion, it facilitates NBC activity.

4.4.1. CA activity does not facilitate NHE-mediated acid efflux

Although it has been shown that CA can facilitate acid efflux on both NHE and NBC, when these transporters are expressed in heterologous transfection systems (Alvarez et al., 2003; Loiselle et al., 2004; Sterling & Casey, 2002; Sterling et al., 2001a; Sterling et al., 2001b), this is not evident for both transporters when physiologically expressed in the wild-type cardiac myocyte.

The present study shows that pharmacological inhibition of CA with ATZ did not affect NHE activity. This suggests that catalytic activity of CA is not necessary for NHE-mediated acid extrusion in isolated ventricular myocytes, even at flux-rates close to maximal NHE activity when pHᵢ is low. Furthermore, NHE activity was similar in the presence or absence of CO₂/HCO₃⁻ buffer. The finding of a lack of effect of CA on NHE activity is in contrast to a previous report (Li et al., 2002) in which NHE-1 and CA II were overexpressed heterologously in HEK293 cells. That study showed addition of 100μM ATZ slowed NHE flux after induction of an acid-load (imposed by switching from CO₂-free to CO₂/HCO₃⁻ superfusate). It was suggested that CA II facilitated acid extrusion through NHE by providing intracellular H⁺-ions arising from cytosolic CO₂ hydration. In order to attain a constant provision of H⁺-ions to NHE, H⁺-ions derived
from CO₂ hydration would have to diffuse fast enough via cytosolic mobile buffers from the active site of the enzyme to feed the transporter. It has been shown in epithelial and cardiac cells that intracellular H⁺-ion mobility is enhanced/facilitated by means of a carbonic buffer "shuttle" (Spitzer et al., 2000; Stewart et al., 1999). The carbonic shuttle system depends on the reversible conversion of CO₂ to HCO₃⁻ and H⁺ catalysed by CA.

According to this, H⁺ extruded across the sarcolemma for example, would result in a local sub-sarcolemmal H⁺ depletion, thus establishing an intracellular [H⁺] gradient. The lower sub-sarcolemmal [H⁺] would then drive the CA-reaction in the direction of CO₂ hydration, causing CO₂ to diffuse from the bulk cytoplasm to feed the reaction. Although the carbonic buffer shuttle has been shown to facilitate H⁺ mobility in cardiac myocytes (Spitzer et al., 2002), in the present study, the fact that no decrease of NHE-mediated acid extrusion occurred when inhibiting CA in the presence of a CO₂/HCO₃⁻ buffer system, suggests that H⁺ provision to NHE by intrinsic mobile buffers (such as histidyl dipeptides) rather than CO₂/HCO₃⁻ is fast enough to sustain acid efflux.

Recently, Casey and colleagues have suggested that CA inhibition can prevent pharmacologically-induced cardiomyocyte hypertrophy by decreasing H⁺ provision to NHE and thus reducing its activity (Alvarez et al., 2006). Although that study showed the presence of NHE and CA II in cardiac myocytes, a functional demonstration and direct evidence for the requirement of CA II activity for full NHE flux in the intact ventricular myocyte was missing. The present work now shows that such a functional link cannot be demonstrated. This suggests that CA activity may contribute to hypertrophy through pathways other than NHE.
4.4.2. NBC-mediated acid extrusion is facilitated by CA activity

There are opposing views on whether CA facilitates NBC activity. Casey and co-workers (Alvarez et al., 2003) showed that CA IV binds to human NBCe1 at an extracellular domain and enhances HCO₃⁻ transport when these two proteins are co-expressed in HEK293 cells. A similar association has been shown for NBCnl and CAII co-expressed in the same renal cell line (Loiselle et al., 2004). These studies have shown that CA can interact with NBC intracellularly and extracellularly, thereby facilitating acid efflux. Contrary to this, Boron and co-workers (Lu et al., 2006) have recently shown that the activity of NBCe1-A expressed in Xenopus oocytes was not affected by injecting CA II or by subsequently inhibiting the enzyme with ETZ. Additionally, no effect of CA II on NBCe1-A activity was found when these molecules were expressed together as a fusion protein. With a similar experimental approach, however, Becker and Deitmer (Becker & Deitmer, 2007) showed that injecting or endogenously expressing CA II enhanced NBC-mediated acid extrusion in oocytes expressing NBCe1, and that the effect was reversed by treating the cells with ETZ. The study also showed that the enhancement of NBC activity was dependent on the concentration of CA II. The contribution of CA on NBC activity was assessed by measuring the slope conductance obtained from the I/V relationship of \(I_{NBC} \), and also by measuring the rate of rise of \([Na⁺]_i \) and \([H^+]_i \) upon introduction of \(CO₂/HCO₃⁻ \) in the presence and absence of CA. CA contributed \(\sim 30\% \) to NBC activity. Additionally, because the activity of NBCe1 is dependent on membrane potential, increasing upon depolarization, the slope conductance and the contribution of CA was measured at two voltages, -40 and -80mV. At both potentials or, in other words, at low and high NBCe1 activity, CA increased NBC slope conductance by \(\sim 25\% \). The
study also showed that the effect of ETZ was specific on CA since addition of the drug had no effect on NBCel activity when this transporter was expressed alone in the oocytes in the absence of CA II.

Some possible explanations have been given for the discrepancy between results obtained by the research groups of Deitmer and Boron. Becker and Deitmer (Becker & Deitmer, 2007) suggest that the higher expression level of NBCel and higher CA II concentration in Boron and co-workers’ study, and also some differences in the voltage-clamping protocol may account for the apparent lack of effect of CA on NBC activity. It is interesting, however, that even when reproducing Boron and co-workers’ experiment in every detail, Becker and Deitmer still obtained a stimulatory effect of CA on NBC activity.

In order to avoid the complications that could arise from manipulating NBC and CA levels, in the present study, isolated cardiac myocytes were used to assess the physiological role of CA in an intact, wild-type cell. Also, instead of acid loading the cell by switching from Hepes to CO$_2$/HCO$_3^-$ superfusate to assess NBC activity, intracellular acidosis was achieved by transiently exposing the cell to NH$_4^+$ (NH$_4^+$ prepulse), and NBC-mediated flux was quantified from the subsequent recovery of pH$_i$. This experimental procedure was used to prevent possible changes in the kinetics of NBC due to CO$_2$/HCO$_3^-$ buffer equilibration.

The results of the present work suggest a functional association involving NBC and CA activity, inferred from the ATZ or ETZ-evoked reduction in NBC-mediated acid efflux, particularly clear at high extrusion rates. The effect of both sulphonamides, ATZ and ETZ, is likely to be specific to CA activity, without direct inhibitory effects on NBC,
given that ETZ has no effect on heterologously expressed NBCe1 in the absence of CA (Becker & Deitmer, 2007; Lu et al., 2006). It is not yet clear, however, if this conclusion is valid for the NBCe2 isoform. Although transcripts of NBCe2 are expressed in cardiac tissue (Pushkin et al., 2000; Virkki et al., 2002), expression of the transporter at the protein level could not be detected in rat cardiac myocytes (Yamamoto et al., 2007). This thus suggests that electrogenic NBC activity in the rat cardiac myocyte is mainly mediated by NBCe1 and therefore ATZ would not have any direct effect on the NBC protein.

Figure 5B shows that, at pH, values where NBC flux is low, the inhibitory effect of ATZ failed to reach statistical significance, although an inhibition trend was evident. At more acidic pH, values, when NBC-mediated acid extrusion is more active, addition of ATZ resulted in a significant reduction of NBC activity. Further stimulating NBC activity with high [K⁺], permitted to explore the effects of CA inhibition at higher NBC flux rates, over the same pH, range. Figure 6B and 6D shows that, under these conditions, inhibition of CA resulted in a significant reduction of NBC activity over the pH, range corresponding to H⁺-equivalent flux values above 2mM min⁻¹ using either cariporide or DMA to inhibit NHE. Similar results were obtained using 100μM ETZ (Figure 6F) instead of ATZ while inhibiting NHE with 30μM DMA. The effect of CA inhibition on NBC activity over a wide flux range is shown in Figure 7 in which NBC-mediated acid efflux in the presence of ATZ or ETZ, at low and high [K⁺], was plotted as a function of NBC flux. The curve shows that as NBC flux increases over the x-axis, the fractional reduction of 50% on NBC-mediated acid efflux caused due CA inhibition by ATZ or ETZ appears constant over the whole flux range. At low NBC-flux values however, it is
possible that the reduction of NBC activity does not reach statistical significance because, at such small fluxes, the resolution of \(J_{NB} \) measurement in the present study becomes limiting. Nevertheless, the overall reduction obtained in the presence of ATZ or ETZ (Figure 7) is in agreement with the findings of Becker and Deitmer, suggesting a constant contribution of CA activity at both low and high NBC activity.

The mechanism by which CA activity may facilitate acid efflux on NBC could be by provision or removal of \(\text{HCO}_3^- \) or \(\text{H}^+ \), as suggested previously (Alvarez et al., 2003; McMurtrie et al., 2004). Alternatively, it may be by \(\text{H}^+ \) provision for allosteric regulation of the NBC transporter when diffusion is not rapid enough to match NBC demand. The latter possibility however, would not explain why NHE is not enhanced by the same mechanism in the presence of carbonic buffer and not affected by inhibition of CA. It is possible, however, that conformational differences between the NHE and NBC transport proteins may result in easier \(\text{H}^+ \) access to the transport and allosteric control-sites in the NHE protein, resulting in no requirement for CA to facilitate \(\text{H}^+ \) provision.

Recently, Deitmer and coworkers (Becker et al., 2005) showed that CA-mediated facilitation of MCT-1 activity was a consequence of CA binding to MCT-1 and not a result of \(\text{H}^+ \) provision arising from CA catalytic activity. This study thus raises the possibility that CA may modulate \(\text{H}^+ \) transporters such as NHE but not NBC by physical binding rather than by its ability to enhance the reversible hydration of \(\text{CO}_2 \).

4.4.3. Intracellular CA activity facilitates NBC-mediated acid extrusion

Since CA has been reported to bind to NBC at extracellular and intracellular sites, its facilitation in cardiac myocytes may depend on both locations for CA. Because ATZ
and ETZ are both membrane-permeant CA inhibitors, they cannot be used to distinguish between these locations.

Although membrane-bound extracellular CA isoforms (CA IV, IX, XII and XIV) have been identified in cardiac myocytes (Knuppel-Ruppert et al., 2000; Purkerson & Schwartz, 2005; Scheibe et al., 2006; Sender et al., 1998), extracellular facilitation of HCO₃⁻ provision to NBC by CA seems unlikely in the present work because, in mammalian ventricular myocytes, the apparent Kₘ for HCO₃⁻ in NBC has been estimated as ~2mM (Ch’en & Vaughan-Jones, 2001). Low Kₘ for extracellular HCO₃⁻ has also been shown for NBC in other cell types (eg. (Deitmer & Schneider, 1998). During the experiments of the present study, the [HCO₃⁻]₀ was kept constant at 22mM, and thus it seems unlikely that HCO₃⁻ provision would be a rate limiting factor for cardiac NBC. Furthermore, addition of the extracellular inhibitor, 14v, to the superfusates, had no effect on NBC-mediated acid efflux, suggesting that an extracellular CA isoform has little or no role in modulating NBC activity, at least in isolated ventricular myocytes.

Although, in the past, the identity of intracellular CA isoforms in the heart has remained elusive, several have recently been identified. Three sarcoplasmic reticulum (SR) membrane-bound CA isoforms, CA IV, IX and XIV, have been identified by immunostaining in adult mouse heart (Scheibe et al., 2006). The study showed that CA XIV and CA IV are associated with the longitudinal SR membrane while CA IV and IX are associated with the terminal SR/t-tubule membranes. Because CA IV is a glycosylphosphatidylinositol (GPI)-anchored isozyme, it can be predicted that the orientation of its catalytic site is directed towards the lumen of the SR making unlikely a functional interaction with NBC. CA IX and XIV are transmembrane proteins, and when
they are expressed in the cell membrane their catalytic domain is oriented towards the extracellular space. Therefore, the predicted orientation of the catalytic activity of these isozymes in the SR will also be towards the luminal space. This orientation makes unfeasible an interaction of these isozymes and NBC within the cytosolic compartment of cardiac myocytes. A recent report (Alvarez et al., 2006) however, has shown the presence of the cytosolic soluble isoform CA II in neonatal and adult rat cardiac myocytes. As mentioned earlier, since CA II has shown to be able to facilitate acid-extrusion when co-expressed with NBC in transfection systems (Alvarez et al., 2003), this isoform, or other that might represent a potential candidate for interaction with NBC in intact cells.

Functional evidence for intracellular CA activity in cardiac myocytes has been provided by several studies (Lagadic-Gossmann et al., 1992; Leem & Vaughan-Jones, 1998; Spitzer et al., 2002). For example, Leem and Vaughan-Jones (Leem & Vaughan-Jones, 1998) showed that, in isolated guinea-pig ventricular cells, CA accelerates intracellular CO₂ hydration by ~2.6-fold at 37°C. Our results from the CA-activity assay in intact myocytes supports this finding, showing that the intracellular CO₂ hydration and dehydration rates are increased ~3-fold by CA at 37°C in rat myocytes. The fact that addition of the extracellular inhibitor, 14v, had no effect on CO₂ hydration or dehydration rates intact cells while ATZ or ETZ exerted clear inhibition, suggests that the CA activity responsible for these reactions in cardiac myocytes is intracellular.

In conclusion, the results of the present study suggest that NBC functionally interacts with an intracellular CA isoform, facilitating acid efflux (Figure 9).
Figure 9. Schematic representation of the proposed role for CA on sarcolemmal acid extrusion. An intracellular CA isozyme enhances the activity of NBC but not of NHE. NBC functionally interacts with CA facilitating acid efflux by decreasing \([HCO_3^-]\), locally at the active transport site and thus enhancing NBC transport rate, or/and by facilitating \(H^+\) diffusion to match bulk cytosolic pH to that of the \(H^+\)-allosteric regulatory site on the NBC protein. Both mechanisms could be related to the role of CA in the kinetics of the carbonic “shuttle”. Although the CA isoform responsible for this effect has not been identified, intracellular CA isozymes, such as CA II, IX and XIV, have been detected in cardiac tissue. Although extracellular CA activity played no role in NBC-mediated acid extrusion in isolated cardiac myocytes, it cannot be discarded that in less well-perfused preparations or tissues, extracellular CA is necessary for transmembrane CO\(_2\) movement and thus pH\(_i\) regulation.

CA may facilitate the intracellular conversion of transported HCO\(_3^-\) to CO\(_2\) which then diffuses out of the cell. This would decrease \([HCO_3^-]\)_i locally at the active transport site and thus enhance NBC transport rate. Once in the extracellular space, CO\(_2\) can be converted into HCO\(_3^-\) thus resulting in a net \(H^+\) extrusion. CA may also enhance NBC-mediated acid extrusion by facilitating \(H^+\) diffusion to match bulk cytosolic pH to that of
the H⁺-allosteric regulatory site on the NBC protein. This mechanism would thus provide tight control for pHᵢ regulation. Although a physical association involving cardiac NBC and an intracellular CA isoform could not be proven, the evidence from this study shows a clear functional association.
5.1. Introduction

Proton concentration ([H+]) affects the activity of most enzymes. The relationship between pH and the catalytic activity of any enzyme depends on the acid-base characteristics of the enzyme itself, and also of its substrates, products and co-factors.

Enzymes are amphoteric molecules containing a large number of acidic and basic groups. The charges on these groups will vary, according to their pK\textsubscript{a} values, with the pH of their environment. This will affect the total net charge of the enzyme and the charge distribution, in addition to the reactivity of the catalytically active groups. These charge variations, plus any consequent structural alterations, may be reflected in changes in the binding of the substrate, the catalytic efficiency and the amount of active enzyme. Thus, the catalytic activity of enzymes varies over specific pH ranges, where the value at which the enzymes are most active is known as the optimum pH. Depending on the shape of the activity-pH relationship, even slight pH deviations can have a significant impact on the enzymatic rate of catalysis.

The enzyme carbonic anydrase (CA) plays an important role in acid-base homeostasis, and thus any factor affecting its activity may have important physiological consequences. CA accelerates the reversible hydration of CO\textsubscript{2}, and thus it controls the effectiveness of carbonic buffering. Under physiological conditions, CO\textsubscript{2}-dependent buffering (\(\beta_{CO2}\)) represents a significant component of total intracellular buffering capacity.
(β_{tot}). At resting pH_{i}, β_{CO2} accounts for about half of β_{tot} when HCO_{3}^-/CO_{2} buffer is fully equilibrated (Leem et al., 1999).

Intracellular H^+ mobility and hence pH_{i} uniformity also depends partly on CA activity. Intracellularly, H^+-ions diffuse bound to intrinsic mobile buffers such as histidyl dipeptides (Vaughan-Jones et al., 2002), and also by means of the “carbonic shuttle” using the carbonic buffer system (see Chapter 1). Thus, efficient function of the carbonic shuttle depends on CA activity (Spitzer et al., 2002; Swietach et al., 2007).

As discussed in Chapter 4, CA also appears to be involved in pH_{i} regulation by being physically or functionally coupled to membrane pH_{i} regulatory transporters in transport metabolons.

Thus, any effect of pH on CA activity is likely to affect physiological buffering, and intracellular H^+ diffusion. This, in turn, will affect spatial pH_{i} uniformity, and also the kinetics of pH_{i} regulation.

5.1.1. pH-sensitivity of CA

Early work by Kernohan (Kernohan, 1965) and Khalifah (Khalifah, 1971) on CA kinetics reported pH sensitivity of the isozymes CA I and CA II. These studies showed that the K_{m} for CO_{2} is pH-insensitive but that K_{cat}/K_{m} varied as a function of pH, with a pK_{a} close to 7.0. Given that K_{m} is not dependent on pH, the pH-sensitivity of K_{cat}/K_{m} reflects that of K_{cat}. K_{cat}, also called turnover number, is a general rate constant used to describe the limiting rate of any enzyme at saturation. It has reciprocal time units (s^{-1}) and can be calculated as the V_{max} of the enzyme divided by the total enzyme concentration (K_{cat} = V_{max}/[E]).
Another isozyme, CA III, however, has been shown to be insensitive to pH. Tu et al (Tu et al., 1983) studied the activity-pH profile of CA III from cat muscle and showed that both \(K_m \) and \(K_{cat} \) were pH-insensitive.

Later, as more CA isozymes were discovered and kinetically characterized, the pH sensitivity profiles of some of these were also described (Baird et al., 1997; Heck et al., 1994; Ulmasov et al., 2000; Wingo et al., 2001). \(pK_a \) values of CA IV, CA V, CA IX and CA XII have been reported as 7.1, 7.4, 6.3, and 7.1, respectively. It has been also been shown that these \(pK_a \) values are consistent with a single ionizable group, which corresponds to the zinc-bound water molecule that originates the \(\text{OH}^- \)-ion.

The relevance of pH sensitivity of CA however, had remained constrained to kinetic and pharmacological inhibition studies and not to its role under physiological conditions.

The aim of the present work was to re-investigate the pH-sensitivity of CA II, test the pH sensitivity of CA activity in cardiac homogenates and finally, investigate CA's pH sensitivity directly in a living cell.
5.2. Methods

5.2.1. CA Activity Assay

The activity of CA II and of endogenous CA in cardiac homogenates was assayed as previously described in Chapter 2 with some modifications in the buffering conditions of the reaction medium (RM). Since the protocol for assessing the pH sensitivity of the enzyme involves the use of a wide pH range, a double buffered reaction medium was used to maintain adequate buffering over the whole range. The double buffer RM consisted of a combination of Hepes and MES buffers which, due to their pKₐ values, resulted in a roughly constant buffering capacity over the pH range 6.5 to 8.0. Figure 1 illustrates this by plotting the total and individual buffering capacity of each buffer as a function of pH.

The pH-dependence of the buffering capacity (β) of RM was calculated as:

\[
\beta (\text{mM}) = \frac{\ln_{10}[\text{Hepes}] \times 10^{pH-pK_{\text{Hepes}}}}{(1 + 10^{pH-pK_{\text{Hepes}}})^2} + \frac{\ln_{10}[\text{MES}] \times 10^{pH-pK_{\text{MES}}}}{(1 + 10^{pH-pK_{\text{MES}}})^2}
\]

where each independent term of the equation defines the buffering capacity of the individual buffers, Hepes and MES, as a function of pH. At 2°C, the combination of 25mM of Hepes (pKa = 7.68) and 25mM MES (pKa = 6.25) resulted in a stable buffering capacity above 10mM in the reaction chamber over the pH range 6.5-8.0.

Sanyal and Maren (Sanyal & Maren, 1981) reported that the pKₐ of CA II varied with temperature by a factor of 0.02 per degree. Therefore, it is possible that the apparent pKₐ determined at 2°C differs at higher temperatures. In order to assess the extent to which temperature differences affect pKₐ values in the enzymatic assay, CA activity was determined at 2 °C, 12 °C, and 22 °C using a high buffering capacity RM. The reaction
medium contained only Hepes and NaCl in order to maintain ionic strength and Cl\(^{-}\) concentration. Due to the high concentration of Hepes, it was unlikely that the concentration of buffer would become rate-limiting at acidic pH values during the course of the reaction. Therefore, MES was not included when Hepes was used at high concentration.

Due to the high turnover rate of the enzyme and also to the increased contribution of the uncatalysed reaction to the overall rate, it was not possible to measure CA activity at physiological temperatures (37°C) using this method.

![Figure 1. pH-dependence of buffering power in the reaction medium](image)

Figure 1. pH-dependence of buffering power in the reaction medium. A double-buffered medium was used to provide a stable buffering power during the course of the reaction. Hepes (25mM, pKa = 7.68; dark blue) or MES (25mM, pKa = 6.25; light blue) provided maximum buffering power only over a narrow pH range. The combination of both buffers (red) resulted in a stable buffering capacity above 10mM in the reaction chamber over the pH range 6.5-8.0.

CO\(_2\) hydration rate was expressed as \(k_f\) (s\(^{-1}\)). The value for \(k_f\) was estimated by fitting the kinetic model described in Chapter 2 to the pH time-course data using two approaches. In one, the initial rate was estimated in RM of pH 8.0, 7.5, 7.0, and 6.5 by computing \(k_f\)
over the time interval for the pH to drop by 0.2 pH units after the addition of CO$_2$-saturated solution. Figure 2A shows a typical recording of such an experiment. Data are shown in red, and the prediction obtained from the best-fit of the model to data is shown in blue. The circle indicates the end of the fitting interval. If the fitting is performed over the whole pH range with a single average k_f value, the data appears to deviate from the model below pH ~7 suggesting that k_f values of the CA-catalysed reaction may decline with decreasing pH (Figure 2B).

Figure 2. Typical experimental recording of CA II activity assay. Panel A shows original experimental recording (red) and the best-fit predicted by the model (blue) to the initial 0.25 pH unit drop. The blue circle indicates the end of the fitting interval. Panel B shows the same experimental trace as in Panel A, but the fitting was performed over the whole pH range of the reaction. A deviation from the prediction can be observed at pH below 7. Panel C shows an experimental recording of the time course of reaction in the absence of CA (uncatalysed reaction). In this case, no deviation from the prediction can be observed. Graphs from Matlab macro output.
In contrast, when the full-range fitting procedure is performed on data obtained from the reaction in the absence of CA (uncatalysed reaction; Figure 2C), no deviation was observed.

In order to estimate k_f over the whole pH range, an interval fitting procedure was used. This second approach consisted of computing k_f for intervals of 2 seconds, over the whole time-course of the reaction, using an RM of initial pH 8.0. The final values of $[CO_2], [HCO_3^-]$, and pH of a given 2 second interval were used as the initial conditions for the next interval. The best-fitting k_f values were plotted as a function of mean pH within the interval. This approach provided k_f values over a wide pH range (Figure 3).

The two approaches were also used to obtain a spontaneous reaction k_f value (i.e. in the absence of CA activity) using data obtained from blanks, or obtained in the presence of 10µM ATZ (k_f^{ATZ}).

![Figure 3. Typical experimental recording and piece-wise best-fit of CA II activity assay. A piece-wise fitting procedure (blue) to data (red) was used to estimate k_f over the whole pH range of the reaction. The fitting interval was set at 2 seconds. Graphs from Matlab macro output.](image)
Several *in vitro* studies have previously shown that the pH profile of CA activity appears sigmoidal (Armstrong *et al.*, 1966; Donaldson & Quinn, 1974; Kernohan, 1965; Khalifah, 1971). Therefore, in the present work, data were fitted with a four-parameter, variable slope, sigmoidal function (Prism 4, Graphpad Inc), after subtracting the spontaneous reaction k_f. pKₐ and Hill coefficient (n_H) values were obtained from the best-fit of the sigmoidal curve.

In order to compare the pH profile of CA at different temperatures, data were corrected by taking the difference obtained by subtracting the blank from the data and normalizing it to the same blank value (i.e. $[\text{data-blank}]$/blank).

5.2.2. pH-sensitivity of the intracellular reversible CO₂ hydration

In order to investigate the pH-sensitivity of intracellular CA activity, pHᵢ was preset to different values using the ammonium or acetate pre-pulse techniques (Roos & Boron, 1981) while simultaneously inhibiting sarcolemmal H⁺-equivalent transport to prevent pHᵢ recovery.

Once the desired pHᵢ was obtained, and the pHᵢ recording was stable, superfusate was switched from Hepes-buffered to CO₂/HCO₃⁻-buffered Tyrode at constant pH₀ to measure the CO₂ hydration rate at different starting pHᵢ values. Na⁺-free solutions were used in combination with ammonium pre-pulses when an acidic starting pHᵢ was desired (Figure 4A). Figure 4B shows the amplified sections of the trace shown in Figure 4A, on switching to CO₂/HCO₃⁻-buffered superfusate.
Figure 4. Typical experimental procedures used to investigate the pH-dependence of the intracellular CO₂ hydration rate and CA activity at acidic pHᵢ. After obtaining a stable resting pHᵢ, the rate of pHᵢ change on switching from HEPES- to CO₂/HCO₃⁻-buffered superfusates was used to assess the degree of CA catalysis. Panel A shows a typical experiment in which after switching from Na⁺-free HEPES- to Na⁺-free 20% CO₂/HCO₃⁻-buffered solution and back, pHᵢ was reset to an acidic value using a 20mM NH₄⁺ pre-pulse. Once the desired pHᵢ was obtained, and the recording stable, superfusate was switched to CO₂/HCO₃⁻ Tyrode to assess CA catalysis at acidic pHᵢ. Different levels of intracellular acid load were obtained by varying the time of exposure to the NH₄⁺-containing solution. Panels B1 and B2 show the amplified sections of experimental trace shown in panel A on switching to CO₂/HCO₃⁻-buffered superfusate at resting (B1) and acidic (B2) pHᵢ in a faster time base.
Cl⁻-free solutions were used in combination with acetate pre-pulses when an alkaline starting pHᵢ was preferred (Figure 5A). Figure 5B shows the amplified sections of the experimental recordings shown in Figure 5A, on switching to CO₂/HCO₃⁻-buffered superfusate at resting and alkaline pHᵢ, on a faster time base.

Figure 5. Typical experimental procedures used to investigate the pHᵢ-dependence of the intracellular CO₂ hydration rate and CA activity at alkaline pHᵢ. Panel A shows the experimental protocol for assessing the rate of CA catalysis at alkaline pHᵢ. In order to preset pHᵢ to alkaline values, an acetate pre-pulse was performed under Cl⁻-free conditions. Once the new pHᵢ was obtained, superfusate was switched from Cl⁻-free Hepes- to Cl⁻-free 5% CO₂/HCO₃⁻-buffered Tyrode. Panels B1 and B2 show the amplified sections of experimental trace shown in panel A on switching to CO₂/HCO₃⁻-buffered superfusate at resting (B1) and alkaline (B2) pHᵢ in a faster time base.
Different levels of intracellular acid or alkali load were obtained by varying the time of exposure to the ammonium or acetate-containing solutions, respectively.

The rate of pH change on CO2 addition was used to assess the degree of CA catalysis. \(k_f \) for the intracellular CA-catalysed reaction \((k_f)\) was estimated by simultaneously solving the set of differential equations described in Chapter 2, modified for piece-wise fitting. \(k_f \) was estimated in intervals of 1 second, and the final values of \([CO_2]_i\), \([HCO_3]_i\), and \(pH_i\) of an interval were used as the initial conditions for the next one (Figure 6). An estimate of the initial rate was obtained by using the first two intervals.

Figure 6. Experimental recording and piece-wise best-fit of intracellular hydration of CO2. Piece-wise fit (blue) to data (red) was obtained in intervals of 1 second over the time course of pH change due to CA-catalysed intracellular CO2 hydration. Graphs from Matlab macro output.
5.3. Results

Figure 7A shows a comparison of the pH profile of the k_f for CO$_2$ hydration obtained in vitro from initial rates of acidification and from the whole-range piece-wise fit, as described in the Methods section of this chapter. Clear pH-sensitivity was obtained using both procedures. Figure 7B shows that, at 2°C, apparent pK$_a$ for CA II activity was 7.00 (using initial rates) and 6.99 (using the piece-wise approach). n_H values for the H$^-$-dependence of CA activity were 1.093 and 1.182, respectively. k_f values computed in the presence of ATZ or computed from blank data sets showed no variation over the whole pH range examined.

![Figure 7. pH profile of CA II activity. Panel A shows a comparison of the pH dependence of k_f data obtained using the initial rate fit (•) and the whole-range piece-wise (*) fit approach at 2°C (n=8-104). k_f data obtained from blanks (○) showed no pH sensitivity over the same pH range (n=22-89). k_f values computed in the presence of ATZ or computed from blank data sets showed no variation over the whole pH range examined. Panel B shows the sigmoidal fits of the two data sets after subtraction of blanks. Apparent pK$_a$ for CA II was 7.00 ± 0.12 using initial rates and 6.99 ± 0.05 using the piece-wise approach. Hill coefficients (n_H) were 1.093 ± 0.10 and 1.182 ± 0.27, respectively.](image-url)
A similar comparison was performed for CA activity in cardiac homogenates. Figure 8 shows pH-dependence of CA activity in cardiac homogenates using both approaches. k_f from blank sets or $k_{f, ATZ}$ showed complete pH insensitivity and thus was subtracted from the overall value before applying the sigmoidal fit. Apparent pK_a for CA activity in cardiac homogenates was 7.145 using initial rates and 6.919 using the piece-wise approach. n_H values were 0.8 and 1.15, respectively.

![Cardiac homogenates (endogenous CA activity)](image)

Figure 8. pH profile of CA activity in cardiac homogenates. After subtraction of blanks, sigmoidal fitting of data resulted in an apparent pK_a of 7.145 using initial rates and 6.919 using the piece-wise approach. n_H values were 0.8 and 1.15, respectively (n=6-28).

Figure 9A shows the uncatalysed k_f at 2°C, 12°C and 22°C as a function of pH, which appears to be independent of pH within the each temperature data set. Note that, as expected, k_f increases with temperature. Figure 9B shows the k_f pH profile of CA II at 2°C, 12°C. At both temperatures CA activity was pH-sensitive and, as expected, k_f increased with temperature. k_f in the presence of CA at 22°C, however, was difficult to measure, due to the high catalytic activity of the enzyme at that temperature, and so has not been shown. Using a different methodology, Dodgson and Forster (Forster, 1991)
were able to measure CA activity up to 37°C. Unfortunately the assay method used in the present work did not have sufficient temporal resolution to detect the fast reaction rates attained in the presence of CA at temperatures above 12°C.

Figure 9. Temperature-dependence of CA II pH sensitivity. Panel A compares \(k_f \) obtained from blanks over the same pH range at 2°C (●), 12 °C (●), and 22 °C (●) (n=5 for each set). \(k_f \) of the uncatalysed reaction increased with temperature but within each temperature set \(k_f \) was invariable over the pH range. Panel B shows a comparison of \(k_f \) variation from pH 8.0 to 6.5 at 2°C (●) and 12 °C (●). Within each temperature set, \(k_f \) increased with pH (n=5 for each set). Panel C: After subtracting blank \(k_f \), data obtained at 2°C and 12°C were fitted to a sigmoidal function. Resulting pK\(_a\) values at 2°C and 12°C were 7.248 ± 0.42 and 6.879 ± 0.034, respectively.
Thus, only data sets at 2°C and 12°C were obtained. After correction, using their respective blanks, a leftward shift was observed in the pH-sensitivity of CA, upon increasing temperature from 2°C to 12°C. A four-parameter sigmoidal fit was performed on both data sets. Resulting apparent pKₐ values at 2°C and 12°C were 7.248 ± 0.42 and 6.879 ± 0.034, respectively (Figure 9C). In this set of experiments, however, data obtained at 2°C did not show clear signs of saturation, and thus the sigmoid fit may not be completely reliable. This can be also noted from the larger confidence interval obtained at 2°C.

The problems of not working at 37°C in vitro were overcome by assessing the pH-sensitivity of CA under physiological conditions, inside a living myocyte. In this case, the high temporal resolution of pHᵢ measurement by using an intracellular pH-sensitive fluorophore, together with the modest expression of endogenous CA activity and the high intracellular intrinsic buffering, permitted resolution of the time course of CO₂-induced acidification of pHᵢ, even at body temperature.

Figure 10A shows the pH profile of \(k_f \) determined for intracellular CO₂ hydration (\(k_f \)). The curve shows that \(k_f \) increases with pHᵢ at 37°C showing clear pH-sensitivity of the hydration reaction. Addition of 100μM ATZ to superfusates resulted in non-variant \(k_f \) values over the whole pHᵢ range, which confirms pH sensitivity of intracellular CA activity and gives an estimate of the uncatalysed intracellular rate of hydration. Figure 10B shows the fitted data after subtraction of the uncatalysed \(k_f \) at each pHᵢ value. The fitting procedure resulted in an apparent pKₐ of 7.17 ± 0.12 and a nH for intracellular H⁺-ions of 2.54.
Figure 10. **pH profile of intracellular CA activity.** Panel A shows variation of k_{f} with pH at 37°C in an intracellular environment (n=23). Addition of 100μM ATZ to superfusates significantly reduced k_{f} and abolished pH dependence (n=6). This confirms pH sensitivity of intracellular CA activity and gives an estimate of the uncatalysed intracellular rate of hydration. Panel B shows the fitted data after subtraction of the uncatalysed k_{f} at each pH value. The sigmoidal fitting procedure resulted in a pKₐ of 7.17± 0.12 and an nH of 2.54.
5.4. Discussion

The present work confirms that the activity of CA II in vitro is pH-sensitive, shows pH dependence of CA activity in cardiac homogenates and also, for the first time, demonstrates pH sensitivity of intracellular CA activity in cardiac myocytes as a model of an intact cell. CA activity showed to drop with decreasing pH.

Therefore carbonic anhydrase, an enzyme involved in physiological pH regulation, is itself regulated by pH. pH-dependence of CA activity has previously been reported in studies of different purified CA isozymes (Baird et al., 1997; Engberg & Lindskog, 1984; Heck et al., 1994; Kernohan, 1965; Khalifah, 1971; Wingo et al., 2001) but not in cardiac homogenates or in intact cells.

pK_a values obtained from CA II and from cardiac homogenate activity assays fall within the same range of those previously published for purified CA isozymes (Baird et al., 1997; Engberg & Lindskog, 1984; Heck et al., 1994; Kernohan, 1965; Khalifah, 1971; Wingo et al., 2001). In the case of CA II, for example, a pK_a of ~7 has been repeatedly reported (Baird et al., 1997; Khalifah, 1971; Lindskog, 1963). In the present work, by using two different data fitting approaches for k_f determination, a pK_a of 7 was obtained for CA II (7.004 with initial rates and 6.990 with piece-wise approach). The pH profile of CA activity in cardiac homogenates determined over a similar pH range resulted in an apparent pK_a also close to 7 (7.071 using initial rates and 6.919 using piece-wise approach). In this case, however, it is not possible to say that this value corresponds to a single CA because several isoforms coexist in cardiac tissue (Alvarez et al., 2006; Scheibe et al., 2006). This value should be taken as an overall pK_a, which characterizes the pH profile of endogenous CA activity in cardiac tissue. Although there
are some studies where CA activity was determined in heart tissue (Bruns & Gros, 1992; Geers et al., 1992), none of these characterized its pH-sensitivity.

One important difference between the kinetic studies, where CA pH-sensitivity was previously determined, and the present work is the temperature at which the activity assay was carried out. Most CA activity pH profiles have been determined at 25°C by different experimental methods (Baird et al., 1997; Heck et al., 1994; Kernohan, 1965; Khalifah, 1971; Wingo et al., 2001). Therefore, a temperature correction should be applied in order to assess CA pH sensitivity at physiological temperature.

Sanyal and Maren (Sanyal & Maren, 1981) determined the temperature dependence of CA II, and showed that its pKₐ decreased by 0.02 units per degree increment. In order to assess the extent to which pKₐ is affected by temperature, in the present work, a pH profile of CA II was generated at two different temperatures. When the data and fits for these two sets were compared, a clear left shift is observed when the temperature is increased from 2°C to 12°C. The shift in pKₐ is equivalent to 0.036 units per degree increment, a larger value than that expected from the data of Sanyal and Maren (Sanyal & Maren, 1981). Unfortunately, from only two temperature data sets it is not possible to extrapolate values and predict what the apparent pKₐ of CA in the activity assay would be at 37°C. The assays, however, confirmed pH sensitivity of CA II, showed pH-sensitivity of CA activity in cardiac homogenates, and also that the CA II pH profile curve shifts to the left with increasing temperature.

In order to assess how this pH-sensitivity translates into a physiological situation, at 37°C and within a cellular environment, a pH profile of intracellular CA activity in cardiac myocytes was generated. CA activity obtained within a pH range between 6.45
and 7.76 showed clear pH dependence. This is confirmed by the fact that data obtained in the presence of 100μM ATZ appeared invariant within the same pH range. After subtracting $k_f\text{ATZ}$, an apparent pK$_a$ of 7.17 and an n$_H$ of 2.54 were obtained from the sigmoidal fit of data. The resulting apparent pK$_a$ value is similar to that obtained in cardiac homogenates at 2°C (pK$_a$ = 6.919-7.14) in the present work. If the temperature correction factor obtained by Sanyal and Maren (Sanyal & Maren, 1981) were correct, pK$_a$ at 37°C should be around 6.5. It is important however, to consider that intracellular conditions may be very different to those of an enzyme assay.

It is not unreasonable to suggest that the different conditions for catalysis and behavior of CA found inside cells could account for the difference between intracellular and in vitro estimates of CA’s pK$_a$. It is possible that binding of electrolytes, of intracellular buffers, macromolecular crowding and electrostatic interactions with other proteins could result in a different pK$_a$ value from that observed in in-vitro studies. Therefore, the results under physiological conditions in living cells should be favoured.

The apparent pK$_a$ and n$_H$ values estimated for intracellular CA activity represent global values which correspond to a mixture of CA isozymes found inside cardiac myocytes (Alvarez et al., 2006; Scheibe et al., 2006). For example, n$_H$ values obtained in-vitro for the pH-dependence of CA II and cardiac homogenates total CA activity were closer to 1 while for intracellular CA activity was 2.54 which suggests the presence of at least two binding sites for H$^+$-ions per CA molecule or binding of H$^+$-ions to a CA dimer or trimer. CA IX (which is expressed in the cardiac myocytes) has been proposed to form trimers (Pastorekova et al., 1992). Thus, it is possible that in intact myocytes CA IX is associated in trimers, and the n$_H$ value above 2 may partly reflect CA IX pH-sensitivity.
The CA IX trimers might be disrupted during the homogenisation process and dilution of cardiac tissue. This will, in turn, result in nH values closer to 1 for the pH-sensitivity of cardiac homogenates.

As shown in Figure 10B, the results of the present work suggest that at a resting pH\textsubscript{i} of 7.25 for example, intracellular CA will be inhibited by H+-ions by about 40%. Despite this, the remaining CA activity can still accelerate the spontaneous rate of CO\textsubscript{2} hydration by 6.6-fold. If pH\textsubscript{i} falls, to 6.8 for example, CA-mediated acceleration of intracellular CO\textsubscript{2} hydration would be decreased by 4-fold.

5.4.1. Possible consequences of CA pH-sensitivity

5.4.1.1. Effect on buffering

Efficient physiological buffering requires rapid equilibration of carbonic buffer. In a well-buffered environment, such as the intracellular compartment, the uncatalysed reversible hydration of CO\textsubscript{2} can take up to several minutes. In cells, however, CA mediates the rapid equilibration of carbonic buffer. Thus, the efficiency of the CO\textsubscript{2}/HCO\textsubscript{3}- buffer system depends on the catalytic activity of CA. Inhibition of CA by H+-ions therefore implies that at low pH\textsubscript{i}, apart from other factors such as decreased intracellular [HCO\textsubscript{3}-], a decline in CA activity may contribute to less efficient physiological buffering.

5.4.1.2. Effect on intracellular H+ mobility

Several studies have shown that in the presence of carbonic buffer, intracellular H+ mobility is enhanced by \sim 50\% (Spitzer \textit{et al}., 2002; Swietach \textit{et al}., 2007; Zaniboni \textit{et
al., 2003). This enhancement can be abolished by addition of ATZ, suggesting that CA is required for carbonic buffer-mediated H⁺-mobility through the carbonic shuttle (see Chapter 1). Vaughan-Jones and co-workers (Swietach et al., 2007) have shown that the contribution of carbonic shuttling is pHᵢ-dependent, decreasing about fivefold when pHᵢ drops from 7.5 to 6.1. Given that CA is pH sensitive, it is possible that the inhibition of CA activity by H⁺-ions contributes in part to the decline in carbonic shuttling, and hence H⁺ mobility. The decline in H⁺-mobility may, in turn, give rise to spatial pHᵢ non-uniformity which may have important physiological consequences including disruption of Ca²⁺-signalling and contraction (Dilworth et al., 2006; Spitzer & Vaughan-Jones, 2006).

5.4.1.3. Effect on membrane H⁺-equivalent transport

CA can be structurally and/or functionally coupled to membrane pHᵢ regulatory transporters (Alvarez et al., 2003; Sterling et al., 2002; Sterling et al., 2001). The activity of CA in this particular arrangement facilitates transporter flux by substrate or product provision or removal, or by facilitating H⁺ diffusion to the allosteric control site of the transporter and match it to that of the bulk cytosol in order to exert tight pHᵢ control.

Thus, the influence of pH on CA activity could also affect membrane transporter kinetics and hence pHᵢ regulation. As shown in Chapter 4, NBC-mediated transport is enhanced by intracellular CA activity in rat ventricular myocytes. In the event of an intracellular acid load, elevated [H⁺]ᵢ activates NBC-mediated acid extrusion. As pHᵢ recovers, NBC activity decreases. Conversely, low pHᵢ decreases CA activity. Thus, the influence that H⁺-ions appear to exert on NBC and CA is opposite. The enhancement provided by CA to NBC activity is by about 50% at every pHᵢ measured. This implies
that over the whole pHᵢ-recovery range, CA appears to act as a constant facilitator of NBC. Although at a low pHᵢ, of for example 6.8, CA activity decreases by about 75%, the remaining enzyme activity would appear to be sufficient to enhance NBC-mediated transport. As pHᵢ recovers, CA activity increases but the facilitation on NBC activity remains constant, suggesting that only a fraction of intracellular CA activity is required for NBC-mediated flux facilitation in ventricular myocytes. Thus, paradoxically, although CA activity changes with pHᵢ, this effect is not reflected in the facilitation of NBC activity.

In summary, the present work confirms previous findings of CA’s pH-sensitivity in vitro, it shows that CA activity in cardiac homogenates is pH-dependent, and it shows for the first time, that CA activity in an intact cell is strongly pH-sensitive. The pH-sensitivity of CA activity implies that the contribution of the enzyme to buffering and intracellular H⁺ mobility, and overall pHᵢ regulation, could vary dynamically with local and global changes in intracellular [H⁺].
CHAPTER 6
GENERAL DISCUSSION

The enzyme carbonic anhydrase (CA) catalyses a very simple biological reaction, the reversible hydration of CO$_2$ to form HCO$_3^-$ and H$^+$ ions. This reaction, however, is the basis for key physiological processes such as respiration, CO$_2$/HCO$_3^-$ transport and overall acid-base balance.

6.1. Functional roles of CA

Throughout this thesis a number of functional roles of CA have been outlined. The widespread distribution of isoforms of the α-CA family among mammalian tissues is linked to a diversity of physiological processes as has been described in Chapter 1. In the heart, several CA isoforms have been described, and their particular spatial distribution within cardiac cells suggests specific functional roles. Intracellularly, soluble and membrane bound isoforms are expressed. CA II is present in the cytoplasm of cardiac myocytes (Alvarez et al., 2006) and CA IV, CA IX, and CA XIV are expressed at the sarcoplasmic reticulum (SR) membrane (Scheibe et al., 2006). SR-associated CA isozymes also display a differential spatial distribution. CA XIV is predominantly localized in the longitudinal SR, whereas CA IX is mainly expressed in the terminal SR/t-tubule region. CA IV is present in both SR regions possibly facing the SR-lumen. CA IV, CA IX, and CA XIV have been also shown to be expressed extracellularly associated to the sarcolemmal membrane.
The presence of CA in the cytosol and membranes within the cardiac myocyte suggests a role for global buffering in the cytoplasmic compartment. CA permits the CO$_2$/HCO$_3^-$ system to act as a fast-reacting buffer, and thus the enzyme would play an important role in controlling the efficiency of physiological buffering even at tortuous intracellular sites, such as the invaginations of the t-system and of the SR. CA could be also relevant for H$^+$ mobility in ventricular myocytes and maintaining pH$_i$ uniformity due to its role in controlling the effectiveness of the carbonic shuttle (Spitzer et al., 2002; Stewart et al., 1999). The presence of soluble CA activity and CA isozymes in the invaginations of the SR membrane and the t-system for example, would ensure rapid H$^+$-mobility preventing a rise in local [H$^+$] and its inhibitory effects on Ca$^{2+}$ channels and ryanodine receptors.

SR-associated CA isoforms may also be necessary for providing H$^+$-ions for counter-transport coupled with SR Ca$^{2+}$ release and re-uptake by SERCA, as well as for intra-SR H$^+$-ion buffering (Wetzel & Gros, 2000). Thus, CA activity could be a factor that modulates excitation-contraction coupling in ventricular myocytes.

The presence of different CA extracellular isoforms also suggests relevant functional roles for these enzymes. Extracellular CA activity may play a role in increasing the availability of extracellular CO$_2$/HCO$_3^-$ buffering (Vanheel et al., 1986). Increased effective carbonic buffering capacity would prevent changes in sarcolemmal surface pH that could in turn affect pH$_i$, and consequently myocyte function. Accelerated extracellular equilibration of CO$_2$ and HCO$_3^-$ is also relevant to CO$_2$ membrane permeation. The rapid equilibration of extracellular carbonic buffer facilitates CO$_2$
permeation by maintaining CO$_2$ gradients between the intracellular and extracellular compartments. Extracellular CA could be also relevant to substrate provision for myocyte metabolism since the extracellular hydration of CO$_2$ generates H$^-$-ions which are co-transported with lactate by MCT (Wetzel et al., 2001).

Finally, intracellular and extracellular CA isoforms could be important in modulating/enhancing the activity membrane H$^+$ transporters such as NHE, NBC and AE as has been proposed based in evidence obtained in heterologous transfection systems (Alvarez et al., 2003; Becker & Deitmer, 2007; Li et al., 2002; Sterling et al., 2002; Sterling et al., 2001).

The aim of the present thesis has been to investigate the functional aspects of CA activity in ventricular myocytes, particularly focusing on its role membrane H$^+$-equivalent transport.

6.1.1. Functional bicarbonate transport metabolon in cardiac myocytes

One main finding of this work is the demonstration, for the first time, of a functional role of CA activity in H$^+$-equivalent transport in an intact living cell. A bicarbonate transport metabolon, involving an intracellular CA isoform and NBC is functional in cardiac myocytes. As shown in Chapter 4, CA doubles the rate of NBC-mediated transport at low and high NBC activity. Given that NBC co-transport HCO$_3^-$ and Na$^+$-ions into the cell, CA is not only contributing to H$^+$ extrusion, but also to Na$^+$ influx into the myocyte. Since a rise in [Na$^+$] is translated in to a rise in [Ca$^{2+}$] through a
change in the driving forces of Na\(^+\)-Ca\(^{2+}\) exchange, CA would be also playing a role in modulating intracellular [Ca\(^{2+}\)].

The enhancement of NBC-mediated transport by CA might thus represent a novel regulatory mechanism of NBC activity in wild-type cells.

The functional transport metabolon in cardiac myocytes, however, does not necessarily imply physical binding of CA II to NBC, as has been previously proposed. Although NBC has an intracellular binding site for the soluble cytosolic isoform, CA II, it is possible that other isoforms might also interact with the transporter in addition or instead of CA II. SR-membrane associated CA isoforms, such as CA IX and CA XIV, represent potential candidates for functionally interact with NBC.

In contrast to NBC, the present work has shown that NHE does not functionally interact with CA in cardiac myocytes. This suggests that although both transporters have CA II binding sites at intracellular domains, other factors, such as structural and conformational differences, may prevent the effect of CA II or other intracellular CA isoforms.

6.1.2. Inhibition of CA activity by various membrane transport inhibitors

Another important and also surprising finding of the present work is that CA showed high promiscuity towards inhibition by different pharmacological compounds. Four widely used membrane transport inhibitors also inhibit CA activity \textit{in vitro}. The NHE inhibitor cariporide, the non-selective bicarbonate transport inhibitor DIDS, the putative NBC inhibitor S0859, and the aquaporin blocker pCMBS, all have been shown
to inhibit CA activity. This finding could have important implications in the design of selective H+ transport inhibitors, and in general in drug design to avoid the potential side effects on acute or chronic CA inhibition.

This work points out some chemical characteristics that should be guarded against to prevent inhibition of CA activity. An insightful example is the case of NHE inhibitors. The sulphomethyl group present in cariporide, but absent in the amiloride derivatives DMA and EIPA, is likely to cause inhibition of CA activity by forming hydrogen bonds within the active site of the enzyme and disrupting critical interactions necessary for catalysis. Similarly, the N-cyanosulphonamide group in S0859, may disrupt interactions within the active site of the enzyme by hydrogen bonding to critical residues required for catalysis. Inhibition of CA by substituted sulphonamides has been previously reported. The inhibition caused by DIDS may be also due hydrogen bonding via the isothiocyanate groups in its molecule, or because of the reactivity of these with several side chain groups. In contrast to the other membrane transport inhibitors, the mercurial pCMBS may inhibit CA activity by blocking the intramolecular proton transfer requires for regeneration of the active species (OH-) at the catalytic centre of the enzyme.

These findings thus show that many membrane transport inhibitors are less selective than hitherto assumed, and that they can affect CA activity at least via two types of interaction with the catalytic mechanism of the enzyme. The potential CA-inhibitory chemical groups and their modes of interaction with the active site of the enzyme highlighted in this work will now have to be considered in drug and experimental design for improved selectivity (Figure 1).
6.1.3. Paradox of H^+-inhibition of CA activity

The present work also shows a paradoxical property of CA. Although the enzyme enhances many aspects of $[H^+]$ regulation, it is, itself, inhibited by H^+-ions. The sigmoidal relationship of intracellular CA activity and pH shows that within the physiological pH range, CA is strongly pH sensitive. This is the first demonstration of
pH-dependence of CA activity inside a living cell. With a pKₐ of 7.1, CA activity would be inhibited by 40% at resting pH. This suggests that CA does not operate physiologically at its "optimum pH" and thus its activity could be steeply increased or decreased by changes in pH. It is likely that the activity-pH relationship of intracellular CA represents the left limb of the classical bell-shaped relationship of pH-dependence of enzyme activity. This implies that besides declining at acidic pH, CA activity will be also inhibited at high non-physiological pH values.

Although the identity of the isoform/s conferring pH sensitivity is not known, it is likely that all of the isoforms present in myocytes are pH-sensitive. Several in vitro studies have shown that the activity of many CA isoforms, included those which are present in cardiac myocytes, such as CA II, CA IV, and CA IX is pH-dependent.

The consequences of this pH-sensitivity would be reflected for example in intracellular H⁺ mobility (Figure 2A and 2B). Inhibition of CA activity by H⁺ may partly explain the drop in H⁺ mobility observed during intracellular acidosis in cardiac myocytes (Swietach et al., 2007). The functional significance of this is not yet known, but it could be speculated that H⁺-mediated decrease in CA activity and H⁺ mobility might represent a mechanism to prevent spread of damaging acidosis to neighboring cells.
Figure 2. Effect of the pH-dependence of CA activity on H^+-mobility. A rise in intracellular $[H^+]$ will inhibit CA activity and therefore decrease H^+-mobility through the carbonic shuttle (Panel A). The functional consequence is illustrated in Panel B; H^+-mobility is controlled by H^+-ions via CA.
The pH-dependence of CA activity may also influence the modulatory effect that the enzyme exerts on NBC activity. Given that the fractional contribution of CA to NBC activity is constant over a wide pH range, it is possible that the changes in the magnitude of the CA-mediated enhancement of NBC activity, consequence of the effects of pH on CA, may be obscured by H⁺ stimulation of NBC-mediated transport (Figure 3).

Figure 3. Effect of intracellular H⁺-ions on NBC and CA. Intracellular H⁺-ions stimulate NBC but at the same time inhibit CA activity. Thus, the expected modulation of NBC-mediated transport by CA due to changes in pH, might be obscured by a stronger influence of H⁺-ions directly on NBC.
6.2. Conclusion

The present thesis has extended our understanding of the functional role of CA in cardiac myocytes by demonstrating for the first time, the functional coupling of CA and a membrane H⁺-equivalent transport protein. The work also demonstrated that intracellular CA activity is strongly pH₁ sensitive within the physiological range which may have important functional consequences for myocyte function. The novel finding of pharmacological inhibition of CA by various membrane transport inhibitors may have important implications for experimental and drug design in order to avoid secondary inhibition of the enzyme, and its acute and chronic effects.

The findings of the present work raise important questions on other roles of CA such as its functional effect on Ca²⁺-signaling and regulation of contractility in cardiac myocytes, and also on the possible modulation of this effect by global and local disturbances in [H⁺]. These questions will be experimentally addressed in future work.
References

References

170

181

184

185

References

THEROUX, P., CHAITMAN, B.R., DANCHIN, N., ERHARDT, L., MEINERTZ, T., SCHROEDER, J.S.,
TOGNONI, G., WHITE, H.D., WILLERSON, J.T. & JESSEL, A. (2000). Inhibition of the
sodium-hydrogen exchanger with cariporide to prevent myocardial infarction in high-risk
ischemic situations. Main results of the GUARDIAN trial. Guard during ischemia against

measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in
situ. Biochemistry, 18, 2210-8.

rabbit erythrocytes: characterization in native cells and expression in Xenopus oocytes.
Biochemistry, 30, 2087-92.

hydration of CO₂ catalyzed by carbonic anhydrase III from skeletal muscle of the cat.

catalyzed by human carbonic anhydrase II. Relation to the interaction between carbonic

histidine 64 in the catalytic mechanism of human carbonic anhydrase II studied with a

(2000). Purification and kinetic analysis of recombinant CA XII, a membrane carbonic
anhydrase overexpressed in certain cancers. Proc Natl Acad Sci USA, 97, 14212-7.

calciﬁed tissues. In The Carbonic Anhydrases: Cellular Physiology and Molecular
Plenum Press.

VANDENBERG, J.I., CARTER, N.D., BETHELL, H.W., NOGRADI, A., RIDDERSTRALE, Y.,

global ischemia in the perfused heart. Circ Res, 72, 993-1003.
References

