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FRANCO BREZZI, T.J.R. HUGHES, AND ENDRE SULI

ABSTRACT. We consider the approximation of elliptic boundary
value problems by conforming finite element methods. A model
problem, the Poisson equation with Dirichlet boundary conditions,
is used to examine the convergence behavior of flux defined on an
internal boundary which splits the domain in two. A variational
definition of flux, designed to satisfy local conservation laws, is
shown to lead to improved rates of convergence.

1. INTRODUCTION

In mathematical modeling of physical phenomena one frequently en-
counters instances when the primary quantity of interest is not the
analytical solution to the underlying partial differential equation but
a linear functional of the analytical solution to the equation; in such
cases, solving the differential equation considered is only an interme-
diate stage in the process of computing the main quantity of concern.
For example, in fluid dynamics one may be interested in calculating the
lift and drag coefficients of a body immersed in a viscous incompress-
ible fluid whose flow is governed by the Navier-Stokes equations. The
lift and drag coefficients are defined as integrals, over the boundary
of the body, of the stress tensor components normal and tangential to
the flow, respectively. Similarly, in elasticity theory, the quantities of
prime interest, such as the stress intensity factor, or the moments of a
shell or a plate, are derived quantities.

A further aspect of measurement problems of this kind is that, fre-
quently, the functional under consideration may be expressed in var-
ious forms which are mutually equivalent at the continuous level but
result in very different approximations under discretization. Thus it
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is important to select the appropriate representation of the functional
before formulating its discretization. This basic idea has been widely
exploited in structural mechanics [1, 2, 3, 4] and heat conduction [14] to
post-process finite element approximations, and more recently also in
the field of computational fluid dynamics in the context of a posteriori
error estimation for lift and drag computations (cf. [9]).

In this paper we shall be concerned with the finite element approxi-
mation of one particular functional: the diffusive flux over an interface.
Our aim is to show that the natural “variational definition” of the dis-
crete flux can provide a high order of accuracy in suitably defined dual
norms. In doing so, we shall not aim at generality. On the contrary,
we will try to present the main idea on the simplest possible prob-
lem, in order to stress what we believe to be the crucial points and
instruments, avoiding technicalities as much as possible. We believe
however that more general results are true, and the difficulty in their
proof is mainly of a technical nature. The related problem of error
analysis of the diffusive flux approximation over the entire boundary of
the computational domain has been considered by Barrett and Elliott
in [5].

The paper is structured as follows. The model problem is described
in Section 2, together with the definition of the proposed approximation
of the flux, while Section 3 is devoted to the proof of our error estimate.

Throughout the paper we shall use the usual notation for Sobolev
spaces and their norms and seminorms. See, for example, [7], [11].

2. THE MODEL PROBLEM AND THE MAIN RESULT

2.1. The geometry of the problem. Let (2 be a rectangle in the
plane with boundary 0€2. We shall suppose that €2 is split into two
disjoint open subdomains €2; and )y by a straight line I'. We do not
assume [' to be parallel to one of the edges of €2; however, for the sake
of simplicity of the notation we shall require that I" has equation z = 0.

2.2. The model problem. For a given f, smooth enough, we consider
the following problem:

(2.1) { find u € H}(Q) such that

—Au= fin Q.
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FIGURE 1. The domain 2 and the internal boundary I'.

It is well known that (2.1) has a unique solution. We set V := H, (Q),
and for v and v in V' we let

(2.2) a(u,v) := / Vu - Vudzdy.
Q

Hence, the variational formulation of (2.1) is

{ find v € V such that

(2:3) a(u,v) = (f,v) Yo eV,

where, as usual, (-, -) represents the inner product in L?().

2.3. The decomposition and the discrete problem. Let 7, be a
decomposition of €2 into triangles which is compatible with the splitting
of 2 into € and € (this obviously means that each triangle is a subset
of one of the two subdomains.) For k£ an integer > 1 we consider the
space V¥ defined as

ViE = {v, € C°(Q) N Hy(Q), vnr € P VT € Tp},

that is the usual finite element space of continuous piecewise polynomi-
als of degree k over the decomposition 7, which obey the homogeneous
Dirichlet boundary condition on 0f).

In tandem with (2.3) consider the following discrete problem:

(2.4) { find u;, € V¥ such that

alup,vn) = (f,vn) Vo, € VE.
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It is well known (see, for instance, [7]) that (2.4) has a unique solution
uy, and that the following error estimates hold, whenever the analytical
solution u has the necessary regularity:

(25) ||U — /U/hHT’Q S Ohk+lir|u|k+119, r = 0, 1.

2.4. The discrete flux, and the statement of the main result.
First of all, in analogy with (2.2) we introduce

(2.6) a;(u,v) ::/ Vu - VodQ
Q;

for i = 1,2. We define now the continuous flux from €2; into {25 through
the interface I' as

8u)
9z’
where we assumed that €2 is to the left of ', that is

0 ={(z,y) € Q, z <0}.

(2.7) F =

Definition (2.7) is to be understood in the pointwise sense (or a.e. if u
is not smooth enough.) Here, however, we shall be more interested in
the flux in the distributional sense. Therefore, we notice that for every
o € D(I') = C3°(T") we have

ou

2. Fooy = [ 24
(2.8) (Fu, ) Faxwds,

where (, ) is the duality pairing between D(I") and its dual. By Green’s
formula we have

ou - -
29)  (Fued= [ Greds —aw.g) - [ fpa0
r orv o

for every ¢ in H'(€2;) that has trace equal to ¢ on I and equal to zero
on the rest of 0€2;.

In turn, the discrete flur F,, will be defined as a linear mapping
acting from the space

(2.10) Zh= (Vi)

into IR. More precisely, in agreement with (2.9) and with [12], [10], we
set, for every ¢y € ¥, :

(2.11) (Fu,»en) = a1(up, @n) — [ dQ
Q
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where @y, is any function in V¥ whose trace on I' coincides with .
Definitions such as (2.11) are fundamental to the development of local
conservation laws; see [10].

For a given ¢ € D(I') we consider now its interpolant ¢! € ;. Our
goal is to estimate the error in the flur; thus we consider

(2.12) (F, — Fy,,¢").

Our main result, to be proved in the next section, is that there exists
a constant C', independent of u, ¢, and h, such that

(2.13) [(Fu = Fuy, @) < O [uliira llellie o

Remark. The estimate (2.13) is essentially an error estimate in the
space H*~1/2(T). As usual, we pay for the increase in the order of con-
vergence by the weakness of the norm. On the other hand, it is known
in similar situations that estimates of this type (that is, with high or-
der in dual spaces) are the crucial ingredient for proving that suitable
postprocessings of the discrete solution converge, with the same high
order, in more reasonable spaces, for instance in L?(T"). These postpro-
cessors are typically constructed through suitable local averages that
are generally rather inexpensive to compute. We refer, for instance, to
the classical papers from the Cornell school (see for instance [6], and
[13]), and to the more recent approach of [8].

Remark. One may also consider the possibility when (2 is separated
into the subdomains §2; and €2, by a general smooth curve I' (instead of
a straight line as assumed here). However, for k£ > 1, this necessitates
the use of isoparametric elements, compatible with I', in our decompo-
sition. Moreover, the presence of a curved interface I' would require the
use of an approximate curve I'y, for the definition of the approximate
flux. It is clear that the additional technical complications to deal with
this situation would be considerable.

3. THE PROOF OF THE ERROR ESTIMATE

3.1. The construction of . For a given ¢ € D(T") we construct now
a suitable lifting ¢ € D(£21) such that

(3.1) 1) vanishes on a strip around 9 \ T,

Y
ors

(3.2) (=1)*20® on T, for s even, 0 < s <k,
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as
(3.3) awzoonF,forsodd,Ogsgk,
:L-S
and there exists a constant C', independent of ¢, such that
(3.4) Nl < Cl@llkrjo,r-

Here and below the ¢(*) denotes the derivative of ¢ of order s with
respect to the variable y along I'. Notice that the boundary conditions
(3.2), (3.3) are compatible with the existence of a continuous lifting
(that is, of one satisfying (3.4)). For instance, we can extend (by zero)
the function ¢ to the whole line x = 0, find the lifting in the half-plane
{z < 0} according to [11] (Chapter 1, Theorem 7.5) and then apply a
suitable cut-off.
We also point out explicitly that, thanks to our construction,

(3.5) Ay € HFH Q).
Indeed, for k = 2 we have
A =y + Py =ty + 9P =000 T
If k=3 we also have
(AY)2 = Yuaw + Vyye = Vaa + (Pa)yy =0 on T,
and for k£ = 4 we can add

(Ad})mm = ¢mmmm + d{yymm = wmmx + (¢mm)yy = wmmx - ng(j} =0 on F,

and so on.

Remark. The construction of 1) is feasible in more general geome-
tries (and for more general operators) than the one considered here.
The relevant properties, as we shall see, are (3.4) and (3.5). However,
the construction would be technically much more complicated.

3.2. The construction of y. We can now proceed to the construction
of the new auxiliary function x. We set

(3.6) p=—AY in Qy, and p=0 1in Qy,

and we define x as the solution of the following problem:

(3.7) { find y € H¢(Q) such that

—Ayxy = pin Q.
Now, from (3.5) we easily deduce that p € H* (Q); moreover,
(3-8) Pl < [plle-100 < CllPlkir0.-
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We also recall that ¢ in (3.1) vanishes in a strip near 0Q; \I". Hence
p has compact support in €, and, in particular, it belongs to Hy ().
Therefore there exists a constant (that we, again, call '), independent
of 9, such that

(3.9) X lk11,0 < ClIpllr-1,0-

The regularity result (3.9) is well known, and its proof can be obtained
by the standard technique of reflecting the problem in an odd way a
suitable number of times, and then using the internal regularity results
for the problem in the enlarged domain. The crucial point is that the
odd reflections of p (which is the Laplacian of x) are still in H*~! of
the enlarged domain. This is true thanks to (3.5).

Using (3.9), (3.8), and (3.4) we then have immediately:

(3.10) IXllk+10 < Cllelleryzr

Remark. As we can see, in order to have an auxiliary function y
satisfying (3.7) and (3.10) we could just assume that Q is sufficiently
smooth, provided that p (= —A) satisfies (3.5) and (3.8).

3.3. The error estimates. As stated in (2.13), we wish to estimate
the error in the finite element approximation of the flux:

(3.11) (F, — Fy,,o").

It is immediate to see that, taking as ¢’ the interpolant ¢’ of ¢ (in
ViF), and using (2.9) and (2.11) we get
(Fu—Fu,, 0"y = ai(u—up, @) = ay(u—un,¢")
(3.12) = ai(u = up, " =) + ar (v — up, )
=I+1I.

The estimate of I follows easily from (2.6), (2.5), usual interpolation
estimates, and (3.4):

(3.13) I <Ch* ulerrg [Wlkir00 < CO*F [uliiro l@lleryar

The estimate of T is also easy: using (2.6), integrating by parts, using
(3.6), (3.3) and then (3.7) we obtain first

IT =~ [o (u—uy) ApdQ = [, (u—up)pdQ
= — [o(u— up) Ax dQ = a(u — un, x).
Then, using (3.14), choosing x' as the usual interpolant of x in V}¥,

and using Galerkin orthogonality, (2.5), interpolation estimates, and
(3.10), we obtain

(3.14)
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IT =a(u—upx)=alu—upx —x")
< CP** |ulpsr0 X k1,0 < CPF |ulkiro lllk+1/2r-

Now, from (3.12), (3.13), and (3.15) we easily conclude the proof of the
desired estimate (2.13).

Remark. In the particular case of £ = 1 we see that the crucial
properties (3.5), (3.4), and hence (3.10) can easily be obtained under
much more general assumptions. It is then clear that the extension of
our result to more general problems and geometries, for linear elements,
is trivial. The technical difficulties would arise only for £ > 1.

(3.15)
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