
VARIATIONAL APPROXIMATION OF FLUX INCONFORMING FINITE ELEMENT METHODS FORELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS:A MODEL PROBLEMFRANCO BREZZI, T.J.R. HUGHES, AND ENDRE S�ULIAbstra
t. We 
onsider the approximation of ellipti
 boundaryvalue problems by 
onforming �nite element methods. A modelproblem, the Poisson equation with Diri
hlet boundary 
onditions,is used to examine the 
onvergen
e behavior of 
ux de�ned on aninternal boundary whi
h splits the domain in two. A variationalde�nition of 
ux, designed to satisfy lo
al 
onservation laws, isshown to lead to improved rates of 
onvergen
e.1. Introdu
tionIn mathemati
al modeling of physi
al phenomena one frequently en-
ounters instan
es when the primary quantity of interest is not theanalyti
al solution to the underlying partial di�erential equation buta linear fun
tional of the analyti
al solution to the equation; in su
h
ases, solving the di�erential equation 
onsidered is only an interme-diate stage in the pro
ess of 
omputing the main quantity of 
on
ern.For example, in 
uid dynami
s one may be interested in 
al
ulating thelift and drag 
oeÆ
ients of a body immersed in a vis
ous in
ompress-ible 
uid whose 
ow is governed by the Navier-Stokes equations. Thelift and drag 
oeÆ
ients are de�ned as integrals, over the boundaryof the body, of the stress tensor 
omponents normal and tangential tothe 
ow, respe
tively. Similarly, in elasti
ity theory, the quantities ofprime interest, su
h as the stress intensity fa
tor, or the moments of ashell or a plate, are derived quantities.A further aspe
t of measurement problems of this kind is that, fre-quently, the fun
tional under 
onsideration may be expressed in var-ious forms whi
h are mutually equivalent at the 
ontinuous level butresult in very di�erent approximations under dis
retization. Thus it1991 Mathemati
s Subje
t Classi�
ation. 65N30, 65N15, 65N50.Key words and phrases. Finite element methods, 
onservation, error estimates,
ux fun
tionals. 1



2 FRANCO BREZZI, T.J.R. HUGHES, AND ENDRE S�ULIis important to sele
t the appropriate representation of the fun
tionalbefore formulating its dis
retization. This basi
 idea has been widelyexploited in stru
tural me
hani
s [1, 2, 3, 4℄ and heat 
ondu
tion [14℄ topost-pro
ess �nite element approximations, and more re
ently also inthe �eld of 
omputational 
uid dynami
s in the 
ontext of a posteriorierror estimation for lift and drag 
omputations (
f. [9℄).In this paper we shall be 
on
erned with the �nite element approxi-mation of one parti
ular fun
tional: the di�usive 
ux over an interfa
e.Our aim is to show that the natural \variational de�nition" of the dis-
rete 
ux 
an provide a high order of a

ura
y in suitably de�ned dualnorms. In doing so, we shall not aim at generality. On the 
ontrary,we will try to present the main idea on the simplest possible prob-lem, in order to stress what we believe to be the 
ru
ial points andinstruments, avoiding te
hni
alities as mu
h as possible. We believehowever that more general results are true, and the diÆ
ulty in theirproof is mainly of a te
hni
al nature. The related problem of erroranalysis of the di�usive 
ux approximation over the entire boundary ofthe 
omputational domain has been 
onsidered by Barrett and Elliottin [5℄.The paper is stru
tured as follows. The model problem is des
ribedin Se
tion 2, together with the de�nition of the proposed approximationof the 
ux, while Se
tion 3 is devoted to the proof of our error estimate.Throughout the paper we shall use the usual notation for Sobolevspa
es and their norms and seminorms. See, for example, [7℄, [11℄.2. The model problem and the main result2.1. The geometry of the problem. Let 
 be a re
tangle in theplane with boundary �
. We shall suppose that 
 is split into twodisjoint open subdomains 
1 and 
2 by a straight line �. We do notassume � to be parallel to one of the edges of 
; however, for the sakeof simpli
ity of the notation we shall require that � has equation x = 0.2.2. The model problem. For a given f , smooth enough, we 
onsiderthe following problem:� �nd u 2 H10 (
) su
h that�� u = f in 
:(2.1)
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Figure 1. The domain 
 and the internal boundary �.It is well known that (2.1) has a unique solution. We set V := H10 (
),and for u and v in V we leta(u; v) := Z
ru � rv dx dy:(2.2)Hen
e, the variational formulation of (2.1) is� �nd u 2 V su
h thata(u; v) = (f; v) 8v 2 V;(2.3)where, as usual, (�; �) represents the inner produ
t in L2(
).2.3. The de
omposition and the dis
rete problem. Let Th be ade
omposition of 
 into triangles whi
h is 
ompatible with the splittingof 
 into 
1 and 
2 (this obviously means that ea
h triangle is a subsetof one of the two subdomains.) For k an integer � 1 we 
onsider thespa
e V kh de�ned asV kh := fvh 2 C0(
) \H10 (
); vhjT 2 Pk 8T 2 Thg;that is the usual �nite element spa
e of 
ontinuous pie
ewise polynomi-als of degree k over the de
omposition Th whi
h obey the homogeneousDiri
hlet boundary 
ondition on �
.In tandem with (2.3) 
onsider the following dis
rete problem:� �nd uh 2 V kh su
h thata(uh; vh) = (f; vh) 8vh 2 V kh :(2.4)



4 FRANCO BREZZI, T.J.R. HUGHES, AND ENDRE S�ULIIt is well known (see, for instan
e, [7℄) that (2.4) has a unique solutionuh, and that the following error estimates hold, whenever the analyti
alsolution u has the ne
essary regularity:jju� uhjjr;
 � C hk+1�rjujk+1;
; r = 0; 1:(2.5)2.4. The dis
rete 
ux, and the statement of the main result.First of all, in analogy with (2.2) we introdu
eai(u ; v) := Z
i ru � rv d
(2.6)for i = 1; 2. We de�ne now the 
ontinuous 
ux from 
1 into 
2 throughthe interfa
e � as Fu := (�u�x )j�(2.7)where we assumed that 
1 is to the left of �, that is
1 = f(x; y) 2 
; x < 0g:De�nition (2.7) is to be understood in the pointwise sense (or a.e. if uis not smooth enough.) Here, however, we shall be more interested inthe 
ux in the distributional sense. Therefore, we noti
e that for every' 2 D(�) = C10 (�) we havehFu; 'i = Z� �u�x ' ds;(2.8)where h ; i is the duality pairing between D(�) and its dual. By Green'sformula we havehFu; 'i = Z� �u�x ' ds = a1(u ; ~') � Z
1 f ~'d
(2.9)for every ~' in H1(
1) that has tra
e equal to ' on � and equal to zeroon the rest of �
1.In turn, the dis
rete 
ux Fuh will be de�ned as a linear mappinga
ting from the spa
e �h = (V kh )j�(2.10)into IR. More pre
isely, in agreement with (2.9) and with [12℄, [10℄, weset, for every 'h 2 �h :hFuh; 'hi = a1(uh ; ~'h) � Z
1 f ~'h d
(2.11)
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tion in V kh whose tra
e on � 
oin
ides with 'h.De�nitions su
h as (2.11) are fundamental to the development of lo
al
onservation laws; see [10℄.For a given ' 2 D(�) we 
onsider now its interpolant 'I 2 �h. Ourgoal is to estimate the error in the 
ux; thus we 
onsiderhFu � Fuh ; 'Ii:(2.12)Our main result, to be proved in the next se
tion, is that there existsa 
onstant C, independent of u, ', and h, su
h thatjhFu � Fuh ; 'Iij � Ch2k jujk+1;
 k'kk+1=2;�:(2.13)Remark. The estimate (2.13) is essentially an error estimate in thespa
e H�k�1=2(�). As usual, we pay for the in
rease in the order of 
on-vergen
e by the weakness of the norm. On the other hand, it is knownin similar situations that estimates of this type (that is, with high or-der in dual spa
es) are the 
ru
ial ingredient for proving that suitablepostpro
essings of the dis
rete solution 
onverge, with the same highorder, in more reasonable spa
es, for instan
e in L2(�). These postpro-
essors are typi
ally 
onstru
ted through suitable lo
al averages thatare generally rather inexpensive to 
ompute. We refer, for instan
e, tothe 
lassi
al papers from the Cornell s
hool (see for instan
e [6℄, and[13℄), and to the more re
ent approa
h of [8℄.Remark. One may also 
onsider the possibility when 
 is separatedinto the subdomains 
1 and 
2 by a general smooth 
urve � (instead ofa straight line as assumed here). However, for k > 1, this ne
essitatesthe use of isoparametri
 elements, 
ompatible with �, in our de
ompo-sition. Moreover, the presen
e of a 
urved interfa
e � would require theuse of an approximate 
urve �h for the de�nition of the approximate
ux. It is 
lear that the additional te
hni
al 
ompli
ations to deal withthis situation would be 
onsiderable.3. The proof of the error estimate3.1. The 
onstru
tion of  . For a given ' 2 D(�) we 
onstru
t nowa suitable lifting  2 D(
1) su
h that vanishes on a strip around �
1 n �;(3.1) �s �xs = (�1)s=2'(s) on �; for s even; 0 � s � k;(3.2)



6 FRANCO BREZZI, T.J.R. HUGHES, AND ENDRE S�ULI�s �xs = 0 on �; for s odd; 0 � s � k;(3.3)and there exists a 
onstant C, independent of ', su
h thatjj jjk+1;
1 � C jj'jjk+1=2;�:(3.4)Here and below the '(s) denotes the derivative of ' of order s withrespe
t to the variable y along �. Noti
e that the boundary 
onditions(3.2), (3.3) are 
ompatible with the existen
e of a 
ontinuous lifting(that is, of one satisfying (3.4)). For instan
e, we 
an extend (by zero)the fun
tion ' to the whole line x = 0, �nd the lifting in the half-planefx < 0g a

ording to [11℄ (Chapter 1, Theorem 7.5) and then apply asuitable 
ut-o�.We also point out expli
itly that, thanks to our 
onstru
tion,� 2 Hk�10 (
1):(3.5)Indeed, for k = 2 we have� =  xx +  yy =  xx + '(2) = 0 on �:If k = 3 we also have(� )x =  xxx +  yyx =  xxx + ( x)yy = 0 on �;and for k = 4 we 
an add(� )xx =  xxxx +  yyxx =  xxxx + ( xx)yy =  xxxx � '(2)yy = 0 on �;and so on.Remark. The 
onstru
tion of  is feasible in more general geome-tries (and for more general operators) than the one 
onsidered here.The relevant properties, as we shall see, are (3.4) and (3.5). However,the 
onstru
tion would be te
hni
ally mu
h more 
ompli
ated.3.2. The 
onstru
tion of �. We 
an now pro
eed to the 
onstru
tionof the new auxiliary fun
tion �. We setp = �� in 
1; and p = 0 in 
2;(3.6)and we de�ne � as the solution of the following problem:� �nd � 2 H10 (
) su
h that��� = p in 
:(3.7)Now, from (3.5) we easily dedu
e that p 2 Hk�1(
); moreover,jjpjjk�1;
 � jjpjjk�1;
1 � C jj jjk+1;
1:(3.8)
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all that  in (3.1) vanishes in a strip near �
1 n�. Hen
ep has 
ompa
t support in 
, and, in parti
ular, it belongs to Hk�10 (
).Therefore there exists a 
onstant (that we, again, 
all C), independentof  , su
h that jj�jjk+1;
 � C jjpjjk�1;
:(3.9)The regularity result (3.9) is well known, and its proof 
an be obtainedby the standard te
hnique of re
e
ting the problem in an odd way asuitable number of times, and then using the internal regularity resultsfor the problem in the enlarged domain. The 
ru
ial point is that theodd re
e
tions of p (whi
h is the Lapla
ian of �) are still in Hk�1 ofthe enlarged domain. This is true thanks to (3.5).Using (3.9), (3.8), and (3.4) we then have immediately:jj�jjk+1;
 � C jj'jjk+1=2;�:(3.10)Remark. As we 
an see, in order to have an auxiliary fun
tion �satisfying (3.7) and (3.10) we 
ould just assume that 
 is suÆ
ientlysmooth, provided that p (= �� ) satis�es (3.5) and (3.8).3.3. The error estimates. As stated in (2.13), we wish to estimatethe error in the �nite element approximation of the 
ux:hFu � Fuh ; 'Ii:(3.11)It is immediate to see that, taking as ~'I the interpolant  I of  (inV kh ), and using (2.9) and (2.11) we gethFu � Fuh ; 'Ii = a1(u� uh; ~'I) = a1(u� uh;  I)= a1(u� uh;  I �  ) + a1(u� uh;  )= I + II:(3.12)The estimate of I follows easily from (2.6), (2.5), usual interpolationestimates, and (3.4):I � C h2k jujk+1;
 j jk+1;
1 � Ch2k jujk+1;
 k'kk+1=2;�:(3.13)The estimate of II is also easy: using (2.6), integrating by parts, using(3.6), (3.3) and then (3.7) we obtain �rstII = � R
1(u� uh)� d
 = R
1(u� uh) p d
= � R
(u� uh)�� d
 = a(u� uh; �):(3.14)Then, using (3.14), 
hoosing �I as the usual interpolant of � in V kh ,and using Galerkin orthogonality, (2.5), interpolation estimates, and(3.10), we obtain
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 j�jk+1;
 � Ch2k jujk+1;
 k'kk+1=2;�:(3.15)Now, from (3.12), (3.13), and (3.15) we easily 
on
lude the proof of thedesired estimate (2.13).Remark. In the parti
ular 
ase of k = 1 we see that the 
ru
ialproperties (3.5), (3.4), and hen
e (3.10) 
an easily be obtained undermu
h more general assumptions. It is then 
lear that the extension ofour result to more general problems and geometries, for linear elements,is trivial. The te
hni
al diÆ
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