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Abstract

We consider dynamic discrete choice models with heterogeneity in both
the levels parameter and the state dependence parameter. We �rst analyse
the purchase of full fat milk using a long consumer panel (T > 100) on many
households. The large T nature of the panel allows us to consistently estimate
the parameters of each household separately. This analysis indicates strongly
that the levels and the state dependence parameter are heterogeneous and
dependently distributed. This empirical analysis motivates the theoretical
analysis which considers the estimation of dynamic discrete choice models on
short panels, allowing for more heterogeneity than is usually accounted for.

The theoretical analysis considers a simple two state, �rst order Markov
chain model without covariates in which both transition probabilities are het-
erogeneous. Using such a model we are able to derive small sample analytical
results for bias and mean squared error. We discuss the maximum likelihood
approach, a novel bias corrected version of the latter and we also develop
a new estimator that minimises the integrated mean square error, which we

�Thanks are due to Bo Honor�e, Manuel Arellano, Thierry Magnac and to the participants in
the CAM workshop on `Limited dependent variable models' in July 2004 and a CEMFI seminar
for helpful comments and discussion. This work was supported by the EU AGE RTN, HPRN-CT-
2002-00235 and by the Danish National Research Foundation through its grant to CAM.



term MIMSE. The attractions of the latter estimator are that it is very easy to
compute, it is always identi�ed and it converges to maximum likelihood as T
becomes large so that it inherits all of the desirable large sample properties of
MLE. Our main �nding is that in almost all short panel contexts the MIMSE
signi�cantly outperforms the other two estimators in terms of mean squared
error.
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1. Introduction

Heterogeneity is an important factor to take into account when making inference
based on micro-data. A signi�cant part of the literature on binary choice models in
the recent years has been about estimating dynamic models accounting for perma-
nent unobserved heterogeneity in a robust way. Honor�e and Kyriazidou (2000) and
Carro (2003) are two examples; surveys of this literature can be found in Arellano
and Honor�e (2001) and Arellano (2003a). Unobserved heterogeneity in dynamic
discrete choice models is usually only allowed through a speci�c constant individual
term, the so-called individual e�ect. In this paper we consider that there may be
more unobserved heterogeneity than is usually allowed for. In particular, we study
whether the state dependence parameter in dynamic binary choice models is also
individual speci�c. In the �rst half of the paper we use information about consumers
milk type choice from a consumer panel data set . The sample used contains more
than a 100 periods for each household, so we have a panel with large T . This allow
us to overcome the incidental parameters problem and use the standard Maximum
Likelihood Estimator (MLE) to test for the presence of permanent unobserved het-
erogeneity both on the intercept and on the coe�cient of the lag of the endogenous
variable versus a model where only the intercept is heterogeneous.1 A likelihood
ratio test overwhelmingly rejects the restricted model. Furthermore, the estimates
of the parameters of interest are very di�erent when we allow for the more general
form of heterogeneity. This illustration serves to motivate the subsequent theoretical
analysis.
Having a micro-panel with a large number of periods is not the common situ-

ation, and the MLE can be severely biased when the number of periods is small.
Therefore, we need to �nd a way to estimate the model with two sources of het-
erogeneity when the number of periods is small. Furthermore, we want to do that,
without imposing any restriction on the conditional distribution of the heteroge-
neous parameters. There are not many examples in the literature where more than
one source of heterogeneity is allowed in dynamic models, even in linear models.
For example, the surveys of dynamic linear models in Arellano and Honor�e (2001),
Wooldridge (2002), chapter 11 and (in the statistics literature) Diggle et al (2004)
do not consider the possibility of allowing for heterogeneity other than in the `inter-
cept'. One of the few examples is the work by Alvarez, Browning and Ejrn�s(2001)
who consider a linear model for the log income process and found that models that
only allow for heterogeneity in levels perform very poorly. Moreover inferences on
outcomes of interest (for example, the distribution of short run risk and the mean
and variance of lifetime earnings) are substantially altered by allowing for much
more heterogeneity than is usually allowed for.
When we consider dynamic discrete choice models, even less is known than for the

linear model. Given this relative ignorance we choose to concentrate attention on the
simplest possible model and to provide a thorough analysis of di�erent estimators
in respect to their tractability, bias, mean squared error and the power of tests

1Others have suggested panel data tests for heterogeneous slopes when the time dimension is
small; see Pesaran and Yamagata (2005) for a review of these tests and a novel test. Our emphasis
in this paper is on allowing for slope heterogeneity rather than simply testing for it.
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based on them. Thus we consider the basic model in which a lag of the endogenous
variable is the only explanatory variable and both the slope and the intercept are
individual speci�c with an unknown distribution. This simple two state, �rst order
Markov chain model allows us to make a fully non-parametric analysis and to derive
exact analytical expressions for the bias and mean squared error of the estimators
we consider. Moreover, we can use the expected bias of the MLE when T is �xed
to correct the MLE estimator and obtain a Non-linear Bias Corrected Estimator
(NBC). We �nd that both MLE and NBC perform poorly in mean squared error
terms. This leads us to suggest a third alternative estimator which minimizes the
integrated mean squared error. This is an attractive estimator since it performs
much better than the other two for small values of T ( T � 20, say) but converges
to MLE as T increases. It is also computationally very simple. We also derive the
Bayesian posterior assuming a uniform prior over the two transition probabilities
and relate our estimators to that.
The rest of the paper is organized as follows. Section 2 presents an empirical

model of the binary choice of consuming full-fat milk in Denmark. This example
was motivated by our interest in designing policies to reduce the fat intake in diets
but here is used as an illustration . In Section 3 we study the basic model without
covariates with T = 3 (that is, four observations including the initial observation).
Although taking four observations for one unit may seem excessively parsimonious,
this analysis allows us to display almost all of the features of interest in a transparent
way. We show that there is no unbiased estimator and then derive the bias for the
MLE. Based on this derivation we de�ne a one step bias corrected estimator, which
we term nonlinear biased corrected (NBC). We calculate the exact bias and mse of
the MLE and the NBC. We show that whilst NBC reduces the bias it is sometimes
worse than MLE for the mean squared error. Both estimators display high mse. To
take this into account, in section 4 we present a new estimator: minimized integrated
mean square error (MIMSE). Section 5 compares the �nite sample properties of the
three estimator with T > 3. There are two main conclusions. First, the NBC is best
in bias terms, both in terms of levels for very small T and in terms of convergence
of the bias to zero in T (the bias of NBC is approximately O (T�2) whereas the bias
of MLE is O (T�1) and the bias of MIMSE converges even more slowly than MLE).
Second, MIMSE almost always dominates MLE and NBC on the mse criterion. We
show the exact areas of dominance for MLE and these include most cases that we
would ever be interested in. Section 6 considers the case where we are pooling many
households and want to estimate the distribution of parameters of interest in the
population of households, presenting some analytical and simulation results for three
di�erent cases. In this case MIMSE dominates both other estimators and gives less
biased estimators of both the location and dispersion of the distribution. This is the
case both as the number of cross-section units becomes large and when it is �xed at
the value we have in our empirical application in section 2. The broad conclusion is
that if we are interested in population outcomes then MIMSE performs well relative
to the other two estimators.
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2. Results for a large T panel.

2.1. Incorporating heterogeneity.

In this section we present results for a dynamic discrete choice analysis from a long
panel. Speci�cally, we estimate the patterns of buying full-fat milk (rather than
low fat milk) on a Danish consumer panel that gives weekly individual purchases by
households for more than 100 weeks.2 Although the results have substantive interest,
we present the analysis here mainly to motivate the subsequent econometric theory.
A conventional treatment would take:

yit = 1f�yit�1 + x0it� + �i + vit � 0g (t = 0; :::; T ; i = 1; :::; N) (2.1)

where yit takes value 1 if household i purchases full-fat milk in week t, and zero oth-
erwise. The parameter �i reects unobserved di�erences in tastes that are constant
over time. The parameter � accounts for state dependence on individual choices
due to habits. The xit variables are other covariates that a�ect for the demand for
full-fat milk. In our empirical analysis these are the presence of child aged less than
7, quarterly dummies and a time trend. Since the relative prices of di�erent varieties
of milk are very stable across our sample period, it is reasonable to assume that the
time trend picks up both price e�ects and common taste changes. A more exible
speci�cation of model (2.1) that we will also consider is a model with interactions
between the lagged dependent variable and the observables.

yit = 1f�yit�1 + x0it� + (yit�1xit)
0 + �i + vit � 0g (t = 0; :::; T ; i = 1; :::; N) (2.2)

This allows that the state dependence depends on observables but still the only
latent factor is the individual speci�c parameter.
It is conventional to allow for a `�xed e�ect' �i as in (2.1). The primary focus

of this paper is on whether this makes su�cient allowance for heterogeneity. In
particular we examine whether it is also necessary to allow that the state dependence
parameter varies across households and if it does, how should we estimate if we have
a short panel. Thus we take the following extended binary choice model:

yit = 1f�iyit�1 + x0it� + �i + vit � 0g (t = 0; :::; T ; i = 1; :::; N) (2.3)

In model (2.3) we allow that both the intercept and the state dependence parameter
are heterogeneous but the e�ects of the covariates are assumed to be common across
households.3

The values of the parameters of (2.3) are not usually of primary interest; rather
they can be used to generate other `outcomes of interest'. There are several candi-
dates. In this paper we shall focus on the dependence of the current probability of

2In Denmark during the �rst four years of our sample period there were three levels of fat
content in milk: skimmed (0:01%), medium (1:5%) and high (3:5%). In the �nal year another low
fat (0:5%) milk was introduced. The 3:5% milk is what we call full-fat milk.

3We could extend the following empirical analysis to allow for heterogeneous e�ects of these
covariates (and would certainly do so if our main concern was to analyse milk expenditure patterns)
but for our purposes here it su�ces to consider only heterogeneity in (�; �).
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y being unity on the lagged value of y; this is the marginal dynamic e�ect :

mi (x) = Pr (yit = 1 j yi;t�1 = 1; x)� Pr (yit = 1 j yi;t�1 = 0; x) (2.4)

Another important outcome of interest is the long run proportion of time that yit is
unity, given a particular �xed x vector. Using standard results from Markov chain
theory this is given by:

Pr (yit = 1 j yi;t�1 = 0; x)
Pr (yit = 1 j yi;t�1 = 0; x) + Pr (yit = 0 j yi;t�1 = 1; x)

(2.5)

In this paper we shall only concern ourselves with the marginal dynamic e�ect; this
is simply to limit what is already a long paper. In this empirical section we assume
that the unobserved random shock vit is an iid standard Normal; in the analysis in
the following sections we consider the nonparametric case in which the distribution
of vit is not known. For the Normal case the marginal dynamic e�ect is given by:

mi (x) = � (�i + x0� + �i)� � (x0� + �i) (2.6)

where �(:) is the standard Normal cdf.

2.2. The Danish consumer panel.

We have a Danish consumer panel that follows the same households for up to �ve
years (with most households exiting the survey before the end of the �ve year pe-
riod) from January 1997 to December 2001. This panel provides data on all grocery
purchases during the survey period and some characteristics of the household. Re-
spondents provide detailed information on every item bought. For example, for milk
they record the volume and price paid, the store where it is purchased, the fat con-
tent and other characteristics of that speci�c purchase. We aggregate purchases of
milk to the weekly level (in Denmark households only consume fresh milk so that
taking weekly averages gives positive purchases of milk in every week) and set the
full-fat indicator for that week/household to unity if the household buys any full-fat
milk in that week; this does not exclude the possibility that they also buy low fat
milk in the same week.
Our strategy in this empirical section is to estimate the parameters of (2.1), (2.2)

and (2.3) without imposing any restriction on the joint distribution of �i and �i. We
thus select a subsample of the data in which the household is observed for at least
for 100 weeks so that we are in a large-T context. We assume that this selection
is exogenous to the milk buying decision. We also select on households having the
number of changes on their decision with respect to the previous period greater
than 10% of the number of periods; without this the parameters for a particular
household may not be identi�ed or may only be weakly identi�ed. We take up the
issue of identi�cation in much more detail in the next section. This sample selection
gives us 371 households who are observed from between 100 and 260 weeks. We
then use a standard Probit to estimate; this is a consistent estimator under the
assumptions made. If we did not include covariates with common e�ects (�i = �)
then this estimation strategy would be the same as treating each household as a
time series and estimating �i and �i (and �i) for each separately. Given the length
of our panel, we invoke standard large-T results.
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2.3. Missing observations.

Some weeks are missing for some households. This seems to be mainly because
households are disinclined to keep complete records in that week or because of being
on holiday.4 We shall take these missing weeks to be `missing at random' in the sense
that their occurrence is independent of the taste for full-fat milk. There are then
two options for dealing with missing weeks. Suppose, for example, that week t� 1
is missing but we observe in weeks t� 2, t and t+ 1. The �rst option is to use the
probability pr (yit = 1 j yi;t�2 = 1; xit; xi;t�1) in the likelihood. This assumes that we
can impute xi;t�1 which is not problematic in our case (for example, the presence of
a child aged less than 7 or the season). The alternative procedure, which we adopt,
is to drop observation t and to start again at period t + 1. When we do this we of
course keep (�i; �i) constant for each household. Using the latter procedure causes a
small loss of e�ciency but is much simpler. The proportion of missing observations
is about 14% of the total number of observations.

2.4. Results for the long panel.

Table 2.1 contains the estimates of models (2.1), (2.2) and (2.3) by maximum like-
lihood estimation (MLE). The model with observable variation in the state depen-
dence parameter, (2.2), �ts signi�cantly better than the most restricted model (2.1)
(a likelihood ratio statistic of 492 with 5 degrees of freedom) but much worse than
the general model (2.3). The likelihood ratio test statistic for model (2.1) against
(2.3) is 3; 058 with 370 degrees of freedom and 2; 566 with 365 degrees of freedom
for testing model (2.2) against (2.3). This represents a decisive rejection of the con-
ventional model which only allows for a single `�xed e�ect'. Figure 8.1 shows the
marginal distributions of the two parameters, �i and �i; as can be clearly seen the
state dependence parameter varies quite widely across households. Restricting the
state dependence parameter to be common across households gives signi�cant bias
in the mean of the state dependence and in the impact of children. It also gives a
value for the variability of the � that is too low. For the general model we �nd a
signi�cant negative correlation between the two parameters; obviously the standard
model (2.1) is not able to capture this.
Figure (8.2) plots the estimated state dependence parameter (b�i) and its 95%

con�dence interval for each of our 371 households, sorted from the smallest value ofb�i to the largest value. The darker horizontal line is the value of � = 0:81 estimated
from model (2.1). The proportion of households whose con�dence interval of b�i
contains b� is 59%. Thus for 41% of our sample the estimated � parameter using
a model with more heterogeneity (2.3) is statistically di�erent from the value using
model (2.1).
We can also consider the marginal e�ect, which is of more interest than the

parameters that are directly estimated. For both models the marginal e�ect is
di�erent for each household but the variation in the magnitude of the marginal
e�ect among households is greater in model (2.3) than in model (2.1). This is

4We emphasise again that we are here presenting an illustration. For a substantive study of
fat consumption we would need to explicitly model the possibility of some purchases not being
recorded.
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Model (2.1) (2.2) (2.3)

� 0:81 0:71 �
mean(�) � � 0:70
stdev(�) � � 0:76
mean(�) �0:72 �0:70 �0:73
stdev(�) 0:60 0:61 0:70
corr(�; �) � � �0:31
Child present 0:47 0:14 0:38
Quarter 2 �0:04 �0:05 �0:05
Quarter 3 �0:06 �0:08 �0:06
Quarter 4 0:08 0:13 0:09
Trend (�100) �0:015 �0:014 �0:014
yit�1�Child present � 0:76 �
yit�1�Quarter 4 � �0:14 �
Log likelihood �27905 �27659 �26376

Table 2.1: Estimates

shown in Figure (8.3); to plot this we set the quarterly dummies and time trend to
zero and the child variable to the mode for the household. The x-axis values are
sorted according to the values of the marginal e�ect for the general model (2.3).
The atter (variable) line is for model (2.1) and the increasing curve is the value
for model (2.3) (with 95% con�dence bands). In this case 46% of households have
a marginal e�ect that is signi�cantly di�erent from that implied by model (2.1)
and 52% have a marginal dynamic e�ect that is not signi�cantly di�erent from
zero (at a 5% signi�cance level). The di�erences between the implications of the
two models for the outcome of interest (the marginal dynamic e�ect) can be seen
even more dramatically in Figure (8.4) and Table (2.2) which present the estimated
distribution of the marginal dynamic e�ect for the three estimated models of those
households with the child variable equal to zero. We plot a grid on this �gure to
facilitate comparisons across the three sets of estimates. Once again we see that
the extended model gives much more variation across households in the marginal
e�ects. But there are also other strong di�erences; for example, for the conventional
models ((2.1) and (2.2)) all households are estimated to have a positive marginal
dynamic e�ect whereas for the unrestricted model about 18% have a negative e�ect
(although most are not `signi�cantly' di�erent from zero, see �gure 8.3). Moreover
the mean and median are lower for the extended model.
This empirical analysis serves to illustrate our contention that there is probably

more heterogeneity in dynamic models than is allowed for by conventional schemes
that only allow `intercepts' to vary across households. We turn now to a considera-
tion of estimation when we do not have the luxury of observing households for very
many periods. One option is to formulate a (random e�ects) parametric model for
the conditional joint distribution of (�; � j x; y0) and then to estimate the parameters
by, say, maximum likelihood. The distributions shown in �gure 8.1 which display
bimodalities and fat tails suggest that some mixture model would be needed for this.
In this paper we consider the alternative of estimating nonparametric models which

8



Model (2.1) (2.2) (2.3)

Minimum 0:10 0:08 �0:29
First quartile 0:22 0:19 0:03
Median 0:26 0:23 0:15
Third quartile 0:30 0:26 0:32
Maximum 0:31 0:28 0:80
Mean 0:26 0:22 0:19
Std. deviation 0:05 0:04 0:23

Table 2.2: Distribution of marginal dynamic e�ect

do not restrict the joint distribution of the latent factors.

3. Exact bias and mse analysis, T=3.

3.1. A simple model with a lagged dependent variable.

The empirical analysis above suggested strongly that we need to allow for hetero-
geneity in both the intercept and the state dependence parameter when we consider
dynamic models. Since relatively little is known about the behaviour of the dynamic
nonlinear panel data estimators in the simpler case in which we only allow for het-
erogeneity in the `intercept' (see, for example, Arellano and Honor�e (2001), section
8), we necessarily have to be modest in our aims here. Consequently we restrict
attention to the simple model with no covariates in which case we can dispense
with parametric formulations such as (2.3) and focus directly on the two transition
parameters:

Gi = pr (yit = 1 j yi;t�1 = 0) (3.1)

Hi = pr (yit = 1 j yi;t�1 = 1) (3.2)

This is a two state, �rst order stationary Markov model with a marginal dynamic
e�ect given by:

Mi = Hi �Gi (3.3)

There is a large literature on the estimation of Markov models considering such
issues as testing for stationarity or the order of the process; the classic reference
is Anderson and Goodman (1957) who consider the case in which all agents have
the same transition matrix. In general most investigators assume less heterogeneity
than we do here. Exceptions include Billard and Meshkani (1995) and Cole et al
(1995) who both use an empirical Bayes approach5 and Albert and Waclawiw (1998)
who adopt a quasi-likelihood approach to estimate the �rst two moments of the joint
distribution of the transition probabilities. The distributions plotted in �gure 8.1
suggest that this may miss important features of the joint distribution.
There are two primary virtues of considering the simplest model of a �rst order

stationary Markov chain without covariates. The �rst is that we can derive exact

5This is essentially a random coe�cients model.
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analytical �nite sample results and discuss estimation and bias reduction without
recourse to simulation. This allows us, for example, to sign the bias for particular
estimators for any value of (G;H) and not just for particular values as in Monte
Carlo studies. The second advantage is that the analysis here is fully nonparametric
and does not require assumptions concerning functional forms. Thus the basic case
serves as a general benchmark which we can examine in great and exact detail. We
shall only consider estimation conditional on the observed initial value yi0.

6 We
start with an exhaustive account of the case in which T = 3 and, with no loss of
generality, we only consider paths that start with yit = 1. This very simple case is
instructive and leads us to reject some possibilities and also suggests general results.
In a later section we consider the general �xed-T case.
If we take a parametric formulation with an arbitrary cdf F (:) then we have:

Gi = F (�i)

Hi = F (�i + �i) (3.4)

Observing this allows us to derive a restriction that is analogous to the usual model
(2.1) with a homogenous state dependence parameter, �i. Assuming that F (:) is
everywhere strictly increasing we can invert both equations to give:

�i = F�1 (Hi)� F�1 (Gi) (3.5)

Then the usual homogeneity restriction , �i = �, gives the restriction:

Hi = F
�
�+ F�1 (Gi)

�
(3.6)

It is important to note that this restriction is parametric and depends on the chosen
cdf. That is, an assumption of a homogeneous state dependence parameter for one
distribution is implicitly assuming that the state dependence parameter is heteroge-
neous for any other distribution, unless � is zero. This emphasizes the arbitrariness
in the usual homogeneity assumption since there is no reason why the homogeneity
of the state dependence parameter �i should be linked to the distribution of F (:).
Much more natural is the hypothesis that the marginal dynamic e�ect is the same
for everyone:

Mi =M ) Hi =M +Gi (3.7)

We shall return to testing for this in subsection 3.6 below.
When there are no covariates we can treat each household as an individual (al-

beit short) time series and drop the i subscript. Table 3.1 gives the outcomes for
the case with T = 3 (that is, four observations including period 0) and y0 = 1. The
�rst column gives the name we have given to each case, the second column gives the
observed path and the next four columns give the frequencies for observed pairs of
outcomes 00; 01; 10 and 11 respectively. The �nal column gives the probability of ob-
serving the path (conditional on y0 = 1) which we denote by pa; pb:::ph respectively.
This is given by:

pj = (G)
nj01 (1�G)n

j
00 (H)n

j
11 (1�H)n

j
10 (3.8)

6If we are willing to make assumptions concerning the initially observed value (for example, it
is drawn from the long run distribution) then there may be considerable gain in e�ciency when T
is small. We do not explore this here. For recent results on taking account of the initial conditions
problem, see Honor�e and Tamer (2004).
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where nj01 is the number of 0! 1 transitions for case j, etc.. We now consider the
choice of an estimator for this scenario.

Case Path n00 n01 n10 n11 Probability of case j, pj

a 1000 2 0 1 0 (1�H) (1�G) (1�G)
b 1001 1 1 1 0 (1�H) (1�G)G
c 1010 0 1 2 0 (1�H)G (1�H)
d 1011 0 1 1 1 (1�H)GH
e 1100 1 0 1 1 H (1�H) (1�G)
f 1101 0 1 1 1 H (1�H)G
g 1110 0 0 1 2 HH (1�H)
h 1111 0 0 0 3 HHH

Table 3.1: Outcomes for T=3

3.2. All estimators are biased.

An estimator
�
Ĝ; Ĥ

�
assigns values to G and H for each case a; b; :::h:n
Ĝ; Ĥ

o
: fa; b; c; d; e; f; g; hg ! =

�
[0; 1]2

�
(3.9)

where = (X) denotes the power set of X . The estimator for the marginal dynamic
e�ect is then given by:

M̂ = Ĥ � Ĝ : fa; b; c; d; e; f; g; hg ! = ([�1; 1]) (3.10)

If the values are unique for each case then the corresponding parameter is point
identi�ed, otherwise it is partially identi�ed. For example, as we shall see in the
next subsection, maximum likelihood is point identi�ed for H but only partially
identi�ed for G. Before considering particular estimators we show analytically that
there is no unbiased estimator for G and H.

Proposition 3.1. All estimators of (G;H) are biased.

The proof is given in the Appendix. This is a useful result since it shows that there
is no point in searching for an unbiased estimator and we consequently have to seek
for estimators that have low bias or low mean squared error. An alternative way
to state this result is that for any estimator of (G;H) we can �nd an alternative
estimator and some values of (G;H) which give a lower bias. Thus we will always be
in the situation in which we are making trade-o�s, even when we restrict attention
to bias.

3.3. Maximum likelihood for the point identi�ed case.

In the current context in which probabilities are given, the most natural estimator

is maximum likelihood. The maximum likelihood estimator
n
ĜMLE
j ; ĤMLE

j

o
j=a;:::h
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gives the values of G and H that maximize the probabilities for each case. It is
convenient to give the results for any �xed T (� 3) at this point. From 3.8 it is
easily seen that the log likelihood is maximized for values of G and H given by:

ĜMLE
j =

nj01
nj00 + nj01

(3.11)

ĤMLE
j =

nj11
nj10 + nj11

(3.12)

If this mapping exists then the parameter is point identi�ed, otherwise it is only
partially identi�ed. Since we condition on y0 = 1 we always have

�
nj10 + nj11

�
6= 0 so

that ĤMLE
j is always de�ned. The MLE estimator for G is not point identi�ed if we

observe yt = 1 for t = 1; 2::T � 1 () n00+ n01 = 0). The probability of this is given
by:

Pr (non-identi�cationjy0 = 1) = HT�1 (3.13)

Thus there is always a positive probability of non-identi�cation (so long as H > 0)
but it goes to zero as T becomes large (so long as H < 1) . Even for modest T; it is
small, unless H is very close to 1. For this reason, most investigators ignore the bias
introduced by selecting out the non-identifying paths. We thus have two distinct
classes of estimator. In the �rst, we exclude any observation with n00 + n01 = 0. In
this case, both G and H are point identi�ed. When we analyze this case, we have
to correct the probabilities for sample selection by dividing the given probabilities
by
�
1�HT�1� (and using ~p to denote adjusted probabilities). The second class of

estimator uses all the observed paths but then ĜMLE is only partially identi�ed. We
concentrate attention on the former, (point identi�ed) case and do not consider the
partially identi�ed estimator.7

Table 3.2 gives the relevant details for the point identi�ed context for T = 3
in which we exclude cases g and h. The second column gives the probabilities
adjusted for the sample selection and the next two columns give the maximum
likelihood estimators for (G;H). These estimators are calculated without taking into
account that we select out cases g and h (that is, they are based on the unadjusted
probabilities given in Table 3.1). This is largely to conform with current practice
which does not adjust probabilities when calculating maximum likelihood estimators
to take account of the probability of identi�cation. The alternative is to use the
adjusted probabilities when calculating the MLE; this is perfectly legitimate (and
may even be considered better) but it is not the common practice and it leads
to estimators which look `non-standard' so we choose to analyze only the MLE
estimator using the unadjusted probabilities. In all the analysis, we always use the
adjusted probabilities when calculating biases and mean squared errors.
The result of the previous subsection tells us that MLE is biased. Since we have

an exact probability model we can go further than this and give the exact bias (using

7The proof that there is no unbiased estimator was given for the no selection case. It is easy to
show by the same methods that there is no unbiased estimator for the class in which we select out
cases g and h.
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Maximum Nonlinear
Adjusted likelihood bias corrected

Case probability, ~pj ĜMLE ĤMLE ĜBC1 ĤBC1

a (1�G)(1�G)
(1+H)

0 0 0 0

b (1�G)G
(1+H)

1=2 0 3=8 0

c G(1�H)
(1+H)

1 0 1 0

d GH
(1+H)

1 1=2 1 2=3

e H(1�G)
(1+H)

0 1=2 0 5=6

f HG
(1+H)

1 1=2 1 2=3

Table 3.2: Outcomes conditioning on point identi�cation

the notation ĜMLE
j to denote the jth element of ĜMLE):

bias
�
ĜMLE

�
= E

�
ĜMLE

�
�G = ~paĜ

MLE
a + :::~pfĜ

MLE
f �G

=
1

2

(1�G)G

(1 +H)
� 0 (3.14)

bias
�
ĤMLE

�
= E

�
ĤMLE

�
�H = ~paĤ

MLE
a + :::~pfĤ

MLE
f �H

=
1

2

(G� 2H � 1)H
(1 +H)

� 0 (3.15)

bias
�
M̂MLE

�
= bias

�
ĤMLE

�
� bias

�
ĜMLE

�
=
1

2

G2 �G+GH �H � 2H2

(1 +H)
� 0 (3.16)

Although the exact bias depends on the unobserved probabilities G and H, the sign
of the bias does not. As can be seen, ĜMLE is always biased upwards and ĤMLE and
M̂MLE always have a negative bias. In particular, the bias of the MLE estimate of
the marginal dynamic e�ect, M̂MLE, is always negative for interior values of (G;H).
This is the analogue of the signable Nickell bias for the linear auto-regressive model
(see, for example, Arellano (2003b)).8 We shall return to this in the section in which
we consider T > 3. The bias of G is maximized at (G;H) = (0:5; 0) and the absolute
value of the biases of H and M are both maximized at (G;H) = (0; 1).
Knowing the sign of the bias is sometimes useful since it allows us to put bounds

on the possible values of the parameters and the marginal e�ect. For example, for

the marginal e�ect for case j we have the bounds
h
ĤMLE
j � ĜMLE

j ; 1
i
. Admittedly

these are not very tight bounds (particularly for case c!), but we should not expect
tight bounds if we only observe a household for four periods. One view of the choice
of an estimator is then that it reduces to �nding an estimator that has the smallest
expected bounds. The negative bias result of the previous subsection then states
that no estimator gives uniformly tight bounds (that is, smallest bounds independent

8We have the same pattern of signs for the bias when we consider the case in which y0 = 0, so
this is a general result.
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of the true parameter values).

3.4. Bias corrected estimators.

Since we have an exact and explicit form for the bias, one improvement that imme-
diately suggests itself is to use these expressions for the bias with the ML estimates
substituted in to de�ne a new (bias corrected) estimator. We de�ne the nonlinear

bias corrected (NBC ) estimator9, which we denote
�
ĜNBC ; ĤNBC

�
, as the MLE

estimate minus the estimated bias of the latter. We denote the probability of case k

using the estimates from observing case j by pk

�
ĜMLE
j ; ĤMLE

j

�
and de�ne the new

estimator by:

ĜNBCj = ĜMLE
j �

hPf
k=a~pk

�
ĜMLE
j ; ĤMLE

j

�
ĜMLE
k � ĜMLE

j

i
= 2ĜMLE

j �
hPf

k=a~pk

�
ĜMLE
j ; ĤMLE

j

�
ĜMLE
k

i
(3.17)

ĤNBC
j = ĤMLE

j �
hPf

k=a~pk

�
ĜMLE
j ; ĤMLE

j

�
ĤMLE
k � ĤMLE

j

i
= 2ĤMLE

j �
hPf

k=a~pk

�
ĜMLE
j ; ĤMLE

j

�
ĤMLE
k

i
(3.18)

The values for these are given in the NBC column of Table 3.2.
We can also derive the biases for the NBC estimator:

bias
�
ĜNBC

�
= E

�
ĜNBC

�
�G =

3

8

(1�G)G

(1 +H)
� 0 (3.19)

bias
�
ĤNBC

�
= E

�
ĤNBC

�
�H =

1

6

(3G� 6H � 1)H
(1 +H)

7 0 (3.20)

bias
�
M̂NBC

�
=
1

24

(9G2 � 9G+ 12GH � 4H � 24H2)

(1 +H)
7 0 (3.21)

Note that the bias for H and M is now not necessarily negative, but this is an ex-
treme case of `negative autocorrelation' in that it implies that both pr (yit = 1 j yi;t�1 = 1)
and pr (yit = 0 j yi;t�1 = 0) are small. The bias for H is positive if the following two
conditions are both satis�ed: H < 1

3
and G > 1

3
+ 2H. If we restrict attention to

values of (G;H) such that M = H � G > �0:5 then we can show that the bias
of M̂NBC is negative. Comparing the bias for ĜNBC with equation (3.14) we see
immediately that the NBC estimator always has a smaller bias for G than MLE.
Moreover, if we again restrict attention to M = H � G > �0:5 then we can show
that the absolute value of biases of H and M are lower for NBC than for MLE.
Actually, for M that holds also for M > �0:8. Thus, for T = 3 and `reasonable'
values of (G;H), the bias correction does indeed lead to a reduction in the bias;
although there are some extreme cases for which bias correcting actually increases
the bias of the estimator.
The de�nitions in (3.17) and (3.18) suggest a recursion in which we take the

new bias corrected estimator and adjust the bias again. This leads to a second

9The terminology here is to distinguish our correction from linear bias correction estimators as
in McKinnon and Smith (1998).
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round estimator in which some estimated probabilities exceed unity. If we continue
iterating then the estimator does not converge. Formally we can show that there
does not exist a limit estimator (see the Appendix) and numerically we have that
the iterated estimator does not converge for one case. Given this we consider only
two candidate estimators: maximum likelihood and the (one step) nonlinear biased
corrected estimator.

3.5. Mean squared error for point identi�ed estimator.

The results above have focussed on the bias of the maximum likelihood estimators�
ĜMLE; ĤMLE

�
and the nonlinear bias corrected estimators

�
ĜNBC ; ĤNBC

�
. How-

ever the mean squared error (mse) can increase even if the bias is reduced. Thus
we also need to consider the mse of our candidate estimators. The mse for any
estimator is given by:

mse
�
Ĝ
�
= E

�
Ĝ�G

�2
=
Pf

j=a~pj (G;H)
�
Ĝj �G

�2
(3.22)

mse
�
Ĥ
�
= E

�
Ĥ �H

�2
=
Pf

j=a~pj (G;H)
�
Ĥj �H

�2
(3.23)

Table 3.3 gives the exact mse's for the two estimators; the values given are not
symmetric in G and H since we consider only the case with y0 = 1. Given these
expressions, it is easy to show neither estimator dominates the other in terms of
mse. For example, if we take (G;H) = (0:5; 0:5) then the mse of ML estimators of
G and H are lower, whereas for (G;H) = (0:25; 0:75) the nonlinear bias corrected
estimator has the lowest mse. Given that we have exact expressions for the mse, we
can �nd the mean for each of our estimators if we assume a distribution for (G;H).
The values in brackets in Table 3.3 give the means assuming a uniform distribution
over [0; 1]2. As can be seen the two estimators of G and H are quite similar in this
regard. We shall return to the mse analysis in the later sections.

Mean squared error

Ĝ Ĥ

MLE 1
4
(5�4G+4H)(1�G)G

(1+H)
1
4

(4H2�4GH+G+1)H
(1+H)

(Mean) (0:138) (0:159)

NBC 1
64
(73�48G+64H)(1�G)G

(1+H)
1
36

(36H2�36GH+7G�24H+25)H
(1+H)

(Mean) (0:140) (0:158)

Value in brackets is mean assuming uniform over (G;H)

Table 3.3: Mean squared errors for estimators
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3.6. Inference for the point identi�ed case.

The �nal consideration for the two estimators is their performance for hypothesis
testing. In the current context the most important hypothesis we would wish to test
is that the marginal dynamic e�ect is zero: G = H. Table 3.4 gives the probabilities
for the six possible paths underH0 : G = H and the corresponding ML estimator and
NBC estimator under the null. To consider inference we have to specify a decision
process that leads us to either reject or not reject H0 consequent on observing one
of the cases a; b:::f . We consider symmetric two-sided procedures in which we reject

H0 if
���M̂ ��� > � where � is a cut-o� value between zero and unity. The top panel of

Figure 8.5 shows the probabilities of rejecting the null when it is true for values of
� 2 (0; 1) and G = H = 0:5. This shows that neither estimator dominates the other
in terms of size. What of the converse: the probability of rejecting H0 when it is
false. The bottom panel of Figure 8.5 shows the case with G = 0:25, H = 0:75 (that
is, with reasonably strong positive state dependence). Once again, neither estimator
dominates the other.

Case Path Prob, given G = H ĜMLE ĜNBC

a 1000 (1�G)2
(1+G)

0 0

b 1001 (1�G)G
(1+G)

1=3 7=18

c 1010 (1�G)G
(1+G)

1=3 7=18

d 1011 G2

(1+G)
2=3 38=45

e 1100 (1�G)G
(1+G)

1=3 7=18

f 1101 G2

(1+G)
2=3 38=45

Table 3.4: Outcomes for no marginal dynamic e�ect

3.7. Where does this leave us?

A number of conclusions arise from a consideration of the simple model with T = 3
and y0 = 1:

� there is no unbiased estimator for either the point identi�ed case nor the
partially identi�ed case.

� MLE gives an upwards biased estimator for G = pr (yit = 1 j yi;t�1 = 0) and a
downwards biased estimator of H = pr (yit = 1 j yi;t�1 = 1) and the marginal
dynamic e�ect M = H �G.

� We can calculate the bias of the MLE and consequently de�ne a one-step bias
corrected estimator (NBC).

� The bias corrected estimator makes the absolute value of the bias of G smaller,
as compared to MLE. For values of M > �0:8 the NBC estimator of M also
gives a lower bias in absolute terms than MLE, but not for values of M close
to �1.
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� NBC does not dominate MLE on a mse criterion. In fact the mean mse
of the two estimators are very close if we assume that (G;H) are uniformly
distributed.

� neither of the two estimators dominates the other in terms of making infer-
ences.

Most of these conclusions apply in the T > 3 case; before considering that ex-
plicitly we present a new estimator that is designed to address the relatively poor
performance of MLE and NBC for the mean squared error.

4. Minimizing the integrated mse.

4.1. Minimum integrated mse estimator of M.

The two estimators developed so far are based on MLE but the case for using MLE is
not very compelling if we have small samples (see Berkson (1980) and the discussion
following that paper). As we have seen, we can make small sample corrections for
the bias to come up with an estimator that is less biased, but our investigations
reveal that this is not necessarily better on the mse criterion. Given that we use
the latter as our principal criterion, it is worth investigating alternative estimators
that take the mse into account directly. To focus our discussion we concentrate on
the estimator for the marginal e�ect M = H � G. The mean squared error for an
estimator M̂j (where j refers to an observed path of zeros and ones) is given by:

�
�
M̂ ;G;H

�
=
XJ

j=1
pj

�
M̂j � (H �G)

�2
(4.1)

As with the bias, we can show that there is no estimator that minimizes the mse for
all values of (G;H) so we have to settle for �nding the minimum for some choice
of a prior distribution of (G;H). Given that we are looking at the general case in
which we have no idea of the context, the obvious choice is the uniform distribution
on [0; 1]2. This gives the integrated mse:

 =

Z 1

0

Z 1

0

�
�
M̂ ;G;H

�
dGdH

=

Z 1

0

Z 1

0

XJ

j=1
pj

�
M̂j � (H �G)

�2
dGdH

=

Z 1

0

Z 1

0

XJ

j=1

�
Gn

j
01 (1�G)n

j
00 Hnj11 (1�H)n

j
10

��
M̂j � (H �G)

�2
dGdH

(4.2)

where we have substituted for pj from Table 3.1. The criterion (4.2) is additive in

functions of M̂1; M̂2; :::M̂J so that we can �nd minimizing values of the estimator
considering each case in isolation. Di�erentiating (4.2) with respect to M̂j, setting
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the result to zero and solving for M̂j gives:

M̂j =

Z 1

0

Z 1

0

pj(H �G)dGdHZ 1

0

Z 1

0

pjdGdH

(4.3)

=

�Z 1

0

H(1+n
j
11) (1�H)n

j
10 dH

�
�Z 1

0

Hnj11 (1�H)n
j
10 dH

� �

�Z 1

0

G(1+n
j
01) (1�G)n

j
00 dG

�
�Z 1

0

Gn
j
01 (1�G)n

j
00 dG

� (4.4)

Using the result that for x and z that are integers we have:Z 1

0

Y x (1� Y )z dY =
� (x+ 1)� (z + 1)

� (x+ z + 2)
=

x!z!

(x+ z + 1)!
(4.5)

(where � (:) is the gamma function) we have the following closed form for the min-
imum integrated mse (MIMSE ) estimator:

M̂MIMSE
j =

�
nj11 + 1

�
!
�
nj10 + nj11 + 1

�
!�

nj10 + nj11 + 2
�
!nj11!

�
�
nj01 + 1

�
!
�
nj00 + nj01 + 1

�
!�

nj00 + nj01 + 2
�
!nj01!

=
nj11 + 1

nj10 + nj11 + 2
� nj01 + 1

nj00 + nj01 + 2
(4.6)

As can be seen, the MIMSE estimator is simply the MLE estimator with njst + 1
replacing njst everywhere.

10 This shows clearly that we have put enough structure
on the problem to point identify the value of M in cases which only gave partial
identi�cation for MLE. Moreover, the MIMSE estimate will always be in the interior
of the parameter space (that is, M̂MIMSE

j 2 (�1; 1)). In terms of computational
di�culty, the MIMSE estimator is as easy to compute as the MLE estimator and
somewhat easier to compute than the NBC estimator. In particular, we only require
observation of the su�cient statistics

�
nj00; n

j
01; n

j
10; n

j
11

	
to compute the estimator

M̂MIMSE
j . Of most importance is that as each nst ! 1 (which would follow from

n ! 1 and the transition probabilities being interior) the MIMSE estimator con-
verges to the MLE. Convergence to MLE is a considerable virtue, since then MIMSE
inherits all of the desirable asymptotic properties (consistency and asymptotic e�-
ciency) of MLE.

4.2. A Bayesian perspective.

The use of a uniform distribution in the derivation of the MIMSE estimator suggests
extending to a Bayesian analysis (see Billard and Meshkani (1995) and Cole et al

10To state the obvious, the �rst term on the rhs of equation (4.6) is ĤMIMSE
j , and the second

term is ĜMIMSE
j .
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(1995)). Suppose we have a sample Y and parameters (G;H) 2 [0; 1]2. The posterior
distribution of the parameters is given by:

P (G;HjY ) = P (Y jG;H)P (G;H)
P (Y )

=
P (Y jG;H)P (G;H)RR

P (Y jG;H)P (G;H)dGdH (4.7)

where P (Y jG;H) is the likelihood of the data and P (G;H) is the prior distribution.
In our case:

P (Y jG;H) = Gn01(1�G)n00Hn11(1�H)n10 (4.8)

and we take a uniform prior P (G;H) = 1. Then, using the same results used to
obtain the closed form for the MIMSE, we have:

P (Y ) =

1Z
0

1Z
0

Gn01(1�G)n00Hn11(1�H)n10dGdH

=
n11!n10!

(n10 + n11 + 1)!

n01!n00!

(n00 + n01 + 1)!
(4.9)

The posterior distribution is given by:

P (G;HjY ) = Gn01(1�G)n00Hn11(1�H)n10 (n00 + n01 + 1)! (n10 + n11 + 1)!

n11!n10!n01!n00!
(4.10)

For a Bayesian analysis this provides all that is required from the data for subsequent
analysis of, say, the Bayesian risk for the marginal dynamic e�ect, M = H�G. Our
interest here is in how this relates to our estimators.
To link to estimators we consider the marginal posterior of G:

P (GjY ) =
1Z
0

P (G;HjY )dH

=
(n00 + n01 + 1)! (n10 + n11 + 1)!

n11!n10!n01!n00!
Gn01(1�G)n00

1Z
0

Hn11(1�H)n10dH

= Gn01(1�G)n00
(n00 + n01 + 1)!

n00!n01!

where we have used (4.10). A standard result is that the MLE is the mode of
the posterior distribution assuming a at prior. In the current context, taking the
derivative of this expression with respect to G; setting this equal to zero and solving
for G gives the maximum likelihood estimator in equation (3.11). To show the link
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to the MIMSE, we have that the conditional mean of G is given by:

E (GjY ) =
1Z
0

GP (GjY )dG

=
(n00 + n01 + 1)!

n00!n01!

1Z
0

Gn01+1(1�G)n00dG

=
(n00 + n01 + 1)!

n01!n00!

(n01 + 1)!n00!

(n00 + n01 + 1 + 1)!

=
n01 + 1

n00 + n01 + 2

which is the MIMSE estimator forG (see the second expression on the rhs of equation
(4.6)).

4.3. Comparing the MIMSE estimator with MLE and NBC, T=3.

We now consider how the MIMSE estimator compares to MLE and NBC in terms
of �nite sample bias and mse. In the interests of comparability we shall only con-
sider the estimates for cases a to f and exclude the cases for which MLE is not
identi�ed. In doing this, we use the adjusted probabilities given in Table 3.2 that
take into account the sample selection. This is consistent with our earlier decision
to consider the MLE derived using the uncorrected probabilities but to use the cor-
rected probabilities when considering bias and mse. Note that the MIMSE estimator
does not minimize the integrated mse for the corrected probabilities so that these
comparisons are relatively unfavorable to MIMSE.
In Table 4.1 we give the three sets of values for the estimator of M . As can be

seen, the estimates of M for MIMSE range from �5=12 to 0:3. Figure 8.6 shows the
comparisons of bias and mse for values of G = 0:2; 0:5; 0:8 and H 2 [0; 1]. The left
hand panels give the bias and the right hand panels give the mse. As can be seen
for the bias, sometimes MIMSE is worse than NBC and sometimes it is better. In
particular, since the bias of the MIMSE estimator can be positive or negative, we can
have zero bias for some parameter values (for example, at (G;H) = (0:5; 0:366)).
Turning to the right hand side panels for mse we see that the MIMSE estimator
does better than MLE and NBC unless there is strong negative state dependence
and sometimes does very much better. For example, for (G;H) = (0:5; 0:8) (which
implies moderate positive state dependence with M = 0:3) we have values for the
mse of 0:49, 0:41 and 0:17 for MLE, NBC and MIMSE, respectively.

5. Exact bias and mse analysis for �xed T>3.

As before we shall only consider sequences that start with y0 = 1. When considering
T = 3 we could write down all 8 possible cases and show explicit expressions for the
bias and mse. For larger values of T , Tables such as Table 3.1 become impractical.
For the observed sequence f1; y1; y2; :::yTg there are 2T possible distinct paths; for
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Case Path M̂MLE M̂NBC M̂MIMSE

a 1000 0 0 1=12
b 1001 �1=2 �3=8 �1=6
c 1010 �1 �1 �5=12
d 1011 �1=2 �1=3 �1=6
e 1100 1=2 5=6 1=6
f 1101 �1=2 �1=3 �1=6
g 1110 � � 1=10
h 1111 � � 3=10

Table 4.1: Estimates of marginal e�ect for three estimators

convenience we denote 2T by �. An estimator for G and H is given by a mapping
from the � outcomes to values for Ĝ and Ĥ. Given 3.11 and 3.12, the bias of the
MLE estimators is given by:

bias
�
ĜMLE

�
=

 
1

(1�HT�1)

P��2
j=1 pj

 
nj01

nj00 + nj01

!!
�G (5.1)

bias
�
ĤMLE

�
=

 
1

(1�HT�1)

P��2
j=1 pj

 
nj11

nj10 + nj11

!!
�H (5.2)

Note that the summation is from 1 to (�� 2) since the last two cases are selected
out. The mse's for the MLE are given by:

mse
�
Ĝ
�
=

1

(1�HT�1)

P��2
j=1 pj

  
nj01

nj00 + nj01

!
�G

!2

mse
�
Ĥ
�
=

1

(1�HT�1)

P��2
j=1 pj

  
nj11

nj10 + nj11

!
�H

!2
(5.3)

These are exact analytical expressions for the bias and mse. We cannot derive closed
form expressions for these (mainly because we cannot display closed form expressions
for njst) but we can compute the exact values numerically using these formulae. We
postpone presenting these until after we de�ne the bias corrected estimator.
As before, we can de�ne a new estimator by taking the bias of the MLE estima-

tor, assuming that the values of G and H are the estimated values and then bias
correcting. This gives:

ĜNBCj = 2ĜMLE
j �

hP��2
k=1 ~pk

�
ĜMLE
j ; ĤMLE

j

�
ĜMLE
k

i
ĤNBC
j = 2ĤMLE

j �
hP��2

k=1 ~pk

�
ĜMLE
j ; ĤMLE

j

�
ĤMLE
k

i
(5.4)

Finally, the MIMSE estimator is given by (4.6).
We turn now to the performance of our three estimators as we increase T from

3 to 12. We consider three cases: (G;H) = (0:75; 0:25), (0:5; 0:5) and (0:25; 0:75).
The �rst of these cases is somewhat extreme in that M = �0:5 and the y variable
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has a high probability of changing from period to period. For most contexts (for
example, state dependence due to habit formation as in our empirical example) this
will never be considered. Nonetheless, there may be circumstances, such as the
purchase of a particular small durable, when we see this sort of behaviour. Figure
8.7 shows the results. The left hand panels give the bias against T and the right
hand panels give the mse's against T ; note that the y-axis scales vary from panel
to panel. We consider �rst the (absolute) biases. There are two aspects to this.
First, how big is the bias for very small T? And, second, how quickly does the bias
converge to zero (if it does) as T increases (see, for example, Carro (2003) and Hahn
and Newey (2004)). Since we gave an exact analysis of the former for T = 3 in the
previous section we concentrate here on the second issue. For all three cases shown
in �gure 8.7 the NBC estimator usually has the smallest bias (in absolute value)
and appears to be converging to zero faster.11 Taking the values shown in the �gure
we can actually be more precise than this. To a very high order of approximation
we have that the bias of estimator e, which we denote be, has:

be ' �eT
�e (5.5)

where �e and �e are functions of (G;H). For the case G = H = 0:5 and the MLE
estimator this is an exact relationship with �MLE = �1 and �MLE = �1 so that
the bias is always exactly �1=T . Regressions, for the three cases we consider, of
the log (absolute) bias on log T gives values of �MLE ' �0:9, �NBC ' �2 and
�MIMSE ' �0:6. Thus the bias disappears fastest for NBC and slowest for MIMSE.
The exact rates for MLE and NBC are close to the expected orders of O (T�1) and
O (T�2) respectively. Given that the bias of NBC is also usually lowest for T = 3
this corroborates what the �gure suggests, namely that NBC is superior to MLE
and MIMSE in terms of bias.
Turning to the mean squared errors a radically di�erent pattern emerges. MIMSE

has the lowest mse in all cases and MLE is almost always better than NBC. One
feature to note is that although the MLE mse is clearly converging towards the
MIMSE mse (as we expect theoretically) it is still signi�cantly higher even when we
have T = 10. The �gures for these three cases suggest that MIMSE is usually best
in mse terms. In �gure 8.8 we display the values of G and H in the unit square for
which MIMSE is mse better than MLE for values of T = 3; 4; 5. Note that the sets
for the di�erent values of T are not nested The MIMSE estimator performs worse
only for extreme values of G and H, particularly those that imply a very negative
state dependence.

6. Many households.

6.1. Identi�cation.

In the previous three sections we have considered households in isolation and treated
their observed paths as separate time series. However in most empirical analyses,
the interest is not in individual households but in the population. Thus it may be

11It is worth noting that the biases for G and H are not so regular and are not even always
monotone decreasing in T . Despite this, the di�erence, M , is well behaved.
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that the distribution of M in the population is of primary interest, rather than the
values for particular households. To consider this, we �rst look at identi�cation
of the distribution of (G;H) with �xed T , conditional on yi0 = 1. We shall as-
sume that we are given population values for outcomes.12 In this case the relevant
population values are the proportions of each of the 2T possible cases. Denote the
population values by �j for j = 1; 2:::2

T . Now suppose that (G;H) are distributed
over [0; 1]2 with a density f (G;H). The population proportions are given by the
integral equations:

�j =

Z 1

0

Z 1

0

pj (G;H) f (G;H) dGdH; j = 1; 2:::2
T (6.1)

where, as before, the probabilities conditional on the �rst observation are given by:

pj (G;H) = Gn
j
01 (1�G)n

j
00 Hnj11 (1�H)n

j
10 (6.2)

In the terminology of integral equations, the probabilities pj (G;H) are known as
kernels. The econometric issues are then:

1. Given a set of observed �j's for j = 1; ::2T , can we always �nd a density
function f (G;H) such that (6.1) holds?

2. If we can �nd such a function for a given set of �j's, is it unique?

3. If we can �nd a unique inverse function, is the inverse a continuous function
of the values �j?

These are the usual set of conditions for a well posed inverse problem; if any of
them fail then we have what is known as an ill posed inverse problem. The �rst
condition asks if the model choice (in this case the form of the pj (G;H) functions
due to the stationary �rst order Markov assumption) imposes any restrictions on
observables. The second is the classical identi�cation condition: given that the data
are consistent with the model, can we recover unique estimates of the unknowns (in
this case, the conditional density f (G;H)). The �nal condition requires that the
estimate of the unknown is `stable' in the sense that small changes in the distribution
of observables lead to small changes in the inferred unknowns.
In our context, the answer to the �rst question is negative. That is, there are sets

of observed �j's which are not consistent with the underlying model of a stationary
�rst order Markov process. This is hardly surprising (we might have a higher order
process or the transition probabilities might be changing over time), but it is worth
giving an example. Suppose T = 3 and we consider again the eight cases given in
Table 3.1. Cases d and f are 1011 and 1101 respectively. Since these two cases have
the same values of njst they have pd = pf which in turn implies that �d = �f which
is a restriction on observables.13 Thus �d = �f is a necessary condition for T = 3;
it may not be su�cient.

12Assuming knowledge of thedistribution of observables in the population is the standard in
analyses of identi�cation.
13Since we are dealing with identi�cation which involves population values we shall not disucss

the issue of testing for the model restrictions given an observed set of proportions for a particular
sample. This is a standard problem in sampling from a multinomial distribution.
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Turning to condition 2, suppose the �j's do satisfy the conditions imposed by
the model. Is it then the case that there is only one density f (G;H) which is
consistent with the equations (6.1)? Once again the answer is negative. To show
this we shall impose some structure on the model and show that even with these
additional constraints the structure is not identi�ed. Consider the case with T = 3
and in which we restrict the distribution of the G's and H's to be discrete, each
with three values: fG1; G2; G3g and fH1; H2; H3g. Let the probabilities of each of
the nine combinations (Gk; Hl) be given by the (9� 1) vector � with values that
sum to unity. De�ne the (8� 9) matrix A by:

Ajm = (Gm)
nj01 (1�Gm)

nj00 (Hm)
nj11 (1�Hm)

nj10 (6.3)

Then the analogue to (6.1) is:
� = A� (6.4)

where � is observed and the values of fG1; G2; G3g, fH1; H2; H3g and � are to be
solved for. Clearly the latter are not uniquely determined by the former since we
have 7 independent equations and 14 unknowns14. To give a particular example,
take the following values:

fG1; G2; G3g = fH1; H2; H3g = f0:4; 0:5; 0:6g
� = (0:25; 0; 0; 0; 0:5; 0; 0; 0; 0:25) (6.5)

This gives a set of observable proportions for each of the 8 cases:

� = (0:1325; 0:1225; :::; 0:1225; 0:1325) (6.6)

where the intervening values are all 0:1225. It is easy to check that the following
gives the same set of proportions:

fG1; G2; G3g = fH1; H2; H3g = f0:3; 0:5; 0:7g
� = (0:0625; 0; 0; 0; 0:875; 0; 0; 0; 0:0625) (6.7)

Thus the distribution is not identi�ed. Given that the general model is not identi�ed
we do not consider the �nal property (continuity of the inverse) since this depends
on imposing enough structure to ensure identi�cation.

6.2. Using MLE, NBC and MIMSE to estimate the distribution of M.

The negative nonparametric result for �xed T from the previous subsection shows
that we need to impose more structure if we are to estimate the distribution of
latent parameters. We now consider how the estimators we had before before -
MLE, NBC and MIMSE - could be used in estimating the distribution of M on
the population. We take T = 9 (that is, 10 observations per unit, including the
initial observation). as being a `reasonably' long panel in practical terms, but still
short enough to give concern over small sample bias. As before we continue with

14Among the eight equations in A, two are identical since cases j = d and j = f are the same,
as previously indicated.
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the context in which yi0 = 1:We present results for three di�erent distributions of
(G;H). Firstly we consider a uniform distribution for (G;H) over [0; 1]2. For this
distribution we have exact calculations of the properties of the estimators when
T = 9 and N goes to in�nity. The second distribution is the empirical distribution
of (G;H) for the 367 households considered in the empirical section above. In this
case we simulate a sample with T = 9 and large N to dsiplay the properties of
the estimators when we pool many households. For the �nal set of simulations we
take a uniform distribution for G on [0:1; 0:9] and impose the homogeneous state
dependence parameter condition (3.5) for H with a Normal distribution:

Hi = �
�
0:81 + ��1 (Gi)

�
(6.8)

The value of � = 0:81 is taken from the empirical estimate of (2.1). This can be
considered a `standard' model with no state dependence.
For the �rst case, the true distribution ofM over the population has the following

cdf:

FMi
(x) =

�
1
2
(1 + 2x+ x2) if x � 0
1
2
(1 + 2x� x2) if x > 0

(6.9)

and pdf

fMi
(x) =

�
(1 + x) if x � 0
(1� x) if x > 0

(6.10)

This implies that the mean and median value of the marginal dynamic e�ect M
are zero. To calculate the estimated distributions, �rstly note that cMi can only
take one of 2T possible values, since any household sequence observed on the pooled
sample will correspond with one of the 2T combinations of 1's and 0's we can have
conditional on the �rst observation. Then, the distribution of cMi when N goes to
in�nity and T is �xed is given by the probabilities of observing each path j on a
pooled sample:

Pr(j) = Pr(jjH;G) Pr(H;G) =
Z
G

Z
H

pjf(G;H)dGdH (6.11)

=

Z
G

Z
H

(G)n
j
01 (1�G)n

j
00 (H)n

j
11 (1�H)n

j
10 f(G;H)dGdH (6.12)

In the case of a uniform distribution we are considering,

Pr(j) =

Z 1

0

Z 1

0

(G)n
j
01 (1�G)n

j
00 (H)n

j
11 (1�H)n

j
10 dGdH (6.13)

=
n11!n10!

(n10 + n11 + 1)!

n01!n00!

(n00 + n01 + 1)!
(6.14)

From this we can derive the distribution of cM as N ! 1 with a �xed T . The
di�erences in the estimated distribution between the three estimators comes from
the di�erent cMi's estimated from a given path j (this is what we have study in
previous sections). Figures 8.9 and 8.10 give the graphical comparisons of the true
distribution and the estimated distributions based on the estimates of Mi for each
possible path by MLE, NBC and MIMSE, conditioning on identi�cation of the MLE.
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The �rst �gure, 8.9, shows the cumulative distributions and the second �gure, 8.10,
shows the Q�Q plot; although the two �gures are informationally equivalent, the
latter reveals to the eye di�erent detail to the former. Consider �rst the MLE and
NBC estimators. The NBC cdf is always to the right of the MLE estimator, and
for many values NBC is closer to the true distribution, since the bias is higher in
absolute value for MLE as compared to NBC. However, these �gures also show that
the NBC estimate does worse than MLE for high values of the marginal e�ect. Thus
the lower bias at the lower end for NBC is cancelled out by the higher bias for higher
values of M . Hence the MLE usually has a lower variance. A conventional statistic
to measure the di�erence between a true distribution and one for an estimator is
the absolute value of the di�erence between them; that is the Kolmogorov-Smirnov
(K-S) statistic:

D = sup
m2[�1;1]

jF (m̂)� F (m)j (6.15)

The NBC estimator dominates the ML estimator on this criterion. Turning to
the MIMSE estimator, we see from the Q � Q plot that up to the 6th decile this
tracks the true value very closely; the divergences are mainly due to the MIMSE
estimator taking on a �nite number of values. In particular, the median of the
MIMSE estimator and the true distribution are very close. The estimated medians
when N !1 and T = 9 by MLE, NBC and MIMSE convergences to �0:14, �0:11
and �0:07 respectively. This close correspondence is to be expected given that the
estimator was derived assuming a distribution close to the one used here. At the top
of the M distribution, however, the MIMSE tends to underestimate the true value
(that is, the cdf is to the left of the true cdf). Despite these di�erences, the main
conclusion from the two �gures is that the MIMSE estimator is considerably better
than either MLE or NBC in terms of the �t to the true cdf.
The probabilities in (6.14) can also be used in deriving the asymptotic properties

of estimates of moments ofMi as N !1 and T is held �xed. This can then be used
as an approximation to exact �nite sample properties in panels with large N and
small T . Looking at the mean marginal dynamic e�ect, the estimated average from

our three estimators (cM = 1
N

PN
i=1
cMi) converge to the true value as (T;N) ! 1,

because cMi ! Mi and the sample average converges to the population mean. But
for a given T , as N !1,

cM !p E
�cMi

�
6= E(Mi) (6.16)

as long as cMi is a biased estimator of Mi.
15 Therefore Pr(j) in (6.14) will give the

probabilities of each possible value of cMi, allowing us to calculate the asymptotic
properties as N !1, of the estimators based on moments of Mi:

cM !p E
�cMi

�
=
X
j

Pr(j)cMj = �l (6.17)

p
N
�cM � bias

�cMi

��
!d N

�
0; V ar(cMi)

�
(6.18)

15Also, note that E
�cM� = E �cMi

�
:
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where bias
�cMi

�
= E

�cMi

�
�E (Mi). When N goes to in�nity and T equals 9, the

MLE, NBC and MIMSE estimates of the mean of M converge to �0:16, �0:08 and
�0:05 respectively. Thus pooling gives that the MIMSE has lower asymptotic bias
bias than NBC for the mean of M . As for the asymptotic root mean squared error,
we have values of 0:21 for the MLE, 0:25 for the NBC and 0:10 for the MIMSE.
Thus MIMSE is best for this criteion and NBC is worst.
The top panels of �gure 8.11 present results using the empirical distribution

(G;H) for the 367 households considered in section 2. For each pair we simulate
50 paths of length 10 with an initial value of unity (so that we have 18; 350 paths
in all, before we select out the paths for which MLE is not identi�ed). The mean
of M for the data is 0:23 (positive mean state dependence) and the means of the
estimates from the simulated data are 0:08; 0:17 and 0:14 for MLE, NBC and MIMSE
respectively. Thus the bias is negative in all three cases and largest in absolute value
for MLE and smallest for NBC., This reects the fact that the NBC estiamtor usually
has a lower bias for any particular path (see section 5). The median of M for the
data is 0:178 and the estimates are 0, 0 and 0:150 for the MLE, NBC and MIMSE.
The latter displays much less bias than the other two estimators. One notable
feature of these distributions is that all three display a sharp jump at some point in
the distribution; at zero for MLE and NBC (hence the median result) and at about
0:25 for MIMSE. It is this clustering (around zero for MLE and NBC and close to
the true mean for MIMSE) that seems to give the lower mean bias for the MIMSE.
Once again, the MIMSE estimator gives a much closer �t to the true distribution.
The �nal set of simulations assume that the state dependence parameter in a

parametric Normal model is constant across the population (note that this does not
impose that the dynamic marginal e�ect is the same for everyone). The results for
the three estimators are given in the bottom panels of 8.11 . When comparing the
three estimators, the conclusion is the same as in the other two simulations: the
MIMSE estimator is clearly better than MLE or NBC. And this is true here even
for the higher percentiles. Note that the overall �t for all estimators is much worse
in the case, mainly due to the e�ciency loss caused by not imposing a constant
state dependence parameter when estimating. This emphasises the importance of
�rst testing for slope homogeneity (see Pesaran and Yamagata (2005)).

6.3. Finite sample comparisons

In the previous subsection, we examined the estimated distribution when the num-
ber of households becomes large. To end this section, we look at the �nite sample
performance of the three estimators, in terms of mean bias and root mean squared
error (RMSE), when we want to estimate the mean and some the quartiles of the
distribution ofM , with samples where the number of households is large but not un-
duly so and the number of periods is small. We consider the same three experiments
as in the previous subsection: The �rst simulation experiment consider a uniform
distribution for (G;H) over [0:1; 0:9]2. The second distribution is the empirical dis-
tribution of (G;H) for the 367 households considered in the empirical section above.
For the �nal set of simulations we take a uniform distribution for G on [0:1; 0:9] and
impose the homogeneous state dependence parameter condition (3.5) for H with a
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Parameters of interest
1st quartile median 3rd quartile mean

1. (G;H) from a Uniform distribution (0:1; 0:9)2

true value �0:233 0 0:237 0
MLE �0:384 �0:144 0:121 �0:129

mean estimate NBC �0:344 �0:081 0:245 �0:046
MIMSE �0:240 �0:030 0:156 �0:041
MLE �0:150 �0:143 �0:116 �0:130

mean bias NBC �0:110 �0:080 0:008 �0:047
MIMSE �0:006 �0:030 �0:081 �0:041
MLE 0:158 0:143 0:125 0:132

RMSE NBC 0:124 0:083 0:046 0:053
MIMSE 0:023 0:058 0:084 0:044

2. (G;H) from the empirical distribution for the 367 households
true value 0:047 0:177 0:381 0:227
MLE �0:143 0:000 0:327 0:080

mean estimate NBC �0:124 0:002 0:488 0:169
MIMSE 0:026 0:153 0:240 0:139
MLE �0:190 �0:176 �0:054 �0:148

mean bias NBC �0:171 �0:175 0:107 �0:058
MIMSE �0:021 �0:024 �0:141 �0:088
MLE 0:190 0:176 0:063 0:149

RMSE NBC 0:172 0:175 0:115 0:062
MIMSE 0:023 0:029 0:142 0:089

3. Homogenous state dependence parameter
true value 0:1597 0:2516 0:2974 0:2202
MLE �0:1259 0:0013 0:3397 0:0926

mean estimate NBC �0:0520 0:0430 0:5084 0:1977
MIMSE 0:0359 0:1440 0:2441 0:1529
MLE �0:2856 �0:2503 0:0422 �0:1276

mean bias NBC �0:2117 �0:2087 0:2109 �0:0225
MIMSE �0:1239 �0:1076 �0:0533 �0:0674
MLE 0:2856 0:2506 0:0475 0:1291

RMSE NBC 0:2118 0:2162 0:2137 0:0323
MIMSE 0:1248 0:1085 0:0560 0:0683

Table 6.1: Estimation of the quartiels and the mean of the distribution of M on the
population.

Normal distribution, as in equation (6.8), with � = 0:81. In all of them yi0 = 1
and the number of households N is equal to 367 (the number of households in the
empirical illustration). As before we exclude observations for which MLE is not
identi�ed.
As before we take the number of observed periods equal to 10 (T = 9). Table 6.1

contains the true values and mean estimates of the mean marginal dynamic e�ect
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(mean M), and of the median and the other quartiles of the distribution of M .
Mean bias and RMSE over 1000 simulations are also reported. The results are in
accordance with the conclusions from the previous subsection. In terms of RMSE,
the MIMSE estimator is signi�cantly better than other two, except for the highest
quartile, where MLE has a better RMSE in two of the three experiments. For the
mean marginal dynamic e�ect, NBC has slightly smaller RMSE than MIMSE in
the last two experiments. However, the NBC estimator of the median M , performs
signi�cantly worse than MIMSE, both in terms of mean bias and RMSE.

7. Conclusions

We have considered in detail the dynamic choice model with no covariates but with
heterogeneity in both the intercept (the `�xed e�ect') and in the autoregressive
parameter. We motivated this analysis by considering the estimates from a long
panel in which we could e�ectively treat each household as a single time series. This
analysis suggested strongly that both the parameters vary systematically across
households. Moreover, the results of this analysis gave us a joint distribution over
the two latent variables that may be di�cult to pick up with a fully parametric
random coe�cients model. Consequently we examined the �nite sample properties
of nonparametric estimators. Since we do not have covariates we could present exact
analytical results for the bias and mean squared error.
We found the following for a simple two state �rst order Markov chain model:

� There is no unbiased estimator for the transition probabilities.

� Conditioning on identi�cation, we found that the MLE estimate of the marginal
dynamic e�ect:

pr (yit = 1 j yi;t�1 = 1)� pr (yit = 1 j yi;t�1 = 0) (7.1)

has a negative bias. This is the nonlinear analogue of the Nickell �nding that
in the linear autoregressive model panel data estimates of the autoregressive
parameter are biased toward zero but note that our results are exact �nite
sample calculations. The degree of bias depends on the parameter values and
the length of the panel, T . The bias of the MLE estimator of marginal dynamic
e�ect does diminish as we increase the length of the panel, but even for T = 16
it can be high.

� Based on the analysis of bias, we constructed a nonlinear bias corrected (NBC)
estimator as a two step estimator with the MLE as the �rst step. We �nd that
this estimator does indeed reduce the bias for most cases (as compared to MLE)
but in mean squared error terms it is similar or even worse than MLE. For all
but extreme values of negative state dependence, the NBC estimator also has
a negative bias for the marginal dynamic e�ect. A detailed examination of the
distribution of the MLE and NBC estimators for T = 3 and T = 10 suggested
that neither can be preferred to the other.
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� Given the relatively poor performance of the MLE and NBC in terms of mse,
we constructed an estimator that minimizes the integrated mse (MIMSE) and
that has a simple closed form. This estimator coincides with the mean of
the posterior distribution assuming a uniform prior. The MIMSE estimator is
sometimes better than MLE and NBC in terms of bias but often it is worse. In
terms of mse, however, it is much better than either of the �rst two estimators,
particularly when there is some positive state dependence.

� Turning to the many person context, we considered a joint distribution of
pr (yit = 1 j yi;t�1 = 1) and pr (yit = 1 j yi;t�1 = 0) over the population. We
showed that this is not nonparametrically identi�ed from observations of fre-
quency counts for di�erent transitions. Thus we either have to move to a ran-
dom coe�cients framework with identi�cation coming from functional form
assumptions or use our nonparametric estimators to estimate the empirical
distribution of the parameters.

� Exact calculations and simulations with T = 9 and large N suggest that the
MIMSE based estimator signi�cantly outperforms the MLE and NBC estima-
tors in recovering the distribution of the marginal dynamic e�ect.

The conclusion from our exact analyses on a single observed path and from simula-
tions in a many unit context is that the MIMSE estimator is superior to MLE or a
particular bias corrected version of MLE.
As emphasized in section 3, we deemed it necessary to examine the no covariate

case in great detail given that we know very little about the performance of alter-
native dynamic choice estimators which allow for a great deal of heterogeneity. Our
analysis suggest that MIMSE is a credible candidate for estimating dynamic discrete
choice models but much remains to be done. An obvious next step is to extend the
MIMSE estimator to allow for covariates.
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8. Appendix.

8.1. Proof of proposition 1.

Take any estimator
n
Ĝ; Ĥ

o
= f(Ga; Gb; :::Gh) ; (Ha; Hb; :::Hh)g. If Ĝ is unbiased

then we have:

G = E
�
Ĝ
�
=
Ph

j=apjGj

= (Gh �Gg)H
3 + (Gc +Ge �Gd �Gf )GH

2 + (Gg �Ge)H
2+

(Gb �Ga)G
2H + (2Ga +Gd +Gf �Gb � 2Gc �Ge)GH + (Ge �Ga)H+

(Ga �Gb)G
2 + (Gb +Gc � 2Ga)G+Ga (8.1)

Equating the last four terms H and G on the right hand side with the left hand side
gives:

Ga = Gb = Ge = 0; Gc = 1 (8.2)

Substituting into the �rst three terms and equating gives:

Ge = Gg = Gh; 1 +Ge = Gd +Gf (8.3)

Substituting this into the term for GH gives the contradiction:

0 = 2Ga +Gd +Gf �Gb � 2Gc �Ge

= 0 + 1 +Ge � 0� 2�Ge = �1 (8.4)

If Ĥ is unbiased, then:

H = E
�
Ĥ
�
=
Ph

j=apjHj

= (Hh �Hg)H
3 + (Hc +He �Hd �Hf )GH

2 + (Hg �He)H
2+

(Hb �Ha)G
2H + (2Ha +Hd +Hf �Hb � 2Hc �He)GH + (He �Ha)H+

(Ha �Hb)G
2 + (Hb +Hc � 2Ha)G+Ha (8.5)

and calculations similar to those for Ĝ also lead to a contradiction.

8.2. The recursive biased corrected estimator.

If we iterate on (3.17) and (3.18) and the process converges (so that
���G(k+1)j �G

(k)
j

���!
0 as k !1 and similarly for H) then we have the limit estimators when G

(k+1)
j =

G
(k)
j :

Ĝj = E(1)
�
Ĝ
�

= pa

�
G
(1)
j ; H

(1)
j

�
Ĝa + ::::pf

�
G
(1)
j ; H

(1)
j

�
Ĝf (8.6)

Ĥj = E(1)
�
Ĥ
�

= pa

�
G
(1)
j ; H

(1)
j

�
Ĥa + ::::pf

�
G
(1)
j ; H

(1)
j

�
Ĥf (8.7)
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Limit
MLE NBC estimator

Case Prob Ĝ Ĥ G(1) H(1) G(1) H(1)

a (1�H)(1�G)(1�G)
(1�H2)

0 0 0 0 0 0

b (1�H)(1�G)G
(1�H2)

1=2 0 3=8 0 0:382 0

c (1�H)G(1�H)
(1�H2)

1 0 1 0 1 0

d (1�H)GH
(1�H2)

1 1=2 1 2=3 1 1

e H(1�H)(1�G)
(1�H2)

0 1=2 0 5=6 (0) (1)

f H(1�H)G
(1�H2)

1 1=2 1 2=3 1 1

Table 8.1: Outcomes conditioning on point identi�cation

This gives two equations in two unknowns for each case a; :::f . The �rst issue in this
iteration is whether there is solution to these two equations, i.e. whether there is a
�xed point on the iterative process. Ideally we would like to have a unique solution
for each case that satis�es G

(1)
j 2 [0; 1] and H(1)

j 2 [0; 1]. We can do this for cases
a; b; c; d; f but not for case e:To see this, note that the equations for case e are:

0 = 0:5pb
�
G(1)e ; H(1)

e

�
+�

pc
�
G(1)e ; H(1)

e

�
+ pd

�
G(1)e ; H(1)

e

�
+ pf

�
G(1)e ; H(1)

e

��
(8.8)

=
1

2

�
3 + 2H

(1)
e �G

(1)
e

�
G
(1)
e�

1 +H
(1)
e

� (8.9)

0:5 = 0:5
�
pd
�
G(1)e ; H(1)

e

�
+ pe

�
G(1)e ; H(1)

e

�
+ pf

�
G(1)e ; H(1)

e

��
=
1

2

�
1 +G

(1)
e

�
H
(1)
e�

1 +H
(1)
e

� (8.10)

This set of equations has no solution that satis�es the constraints. To see this, if
G
(1)
e = 0 then the second equation implies a contradiction. Thus we must have

3 + 2H
(1)
e �G

(1)
e = 0. Substituting this into the second equation gives

2
�
H(1)
e

�2
+ 3H(1)

e � 1 = 0 (8.11)

which does not have any roots between zero and unity.
A second issue is whether the iterated estimator converge to the �xed point.

The answer is negative. The iterated estimator is not guaranteed to converge. For
case e the recursion goes outside the interval [0; 1] and never reach a �xed point for
H. Nonetheless, the other 5 cases converge to their �xed points; these are given in
Table 3.2. We can also take the estimates for case e that minimize the sum of the
di�erences between the expected values of the ML estimators and the values of the
latter:8<:12

�
3 + 2H

(1)
e �G

(1)
e

�
G
(1)
e�

1 +H
(1)
e

�
9=;
2

+

8<:12
�
1 +G

(1)
e

�
H
(1)
e�

1 +H
(1)
e

� � 0:5

9=;
2

(8.12)
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The minimizing values are G
(1)
e = 0 and H

(1)
e = 1 (shown in brackets in the Table

8.1 to indicate that they are biased). In fact, these values are a solution of the
equation for G but not for H.
The biases for the limit estimator are given by:

�
�
G(1)

�
= E

�
G(1)

�
�G = 0:382

(1�G)G

(1 +H)
� 0 (8.13)

'
�
H(1)� = E

�
H(1)��H =

(G�H)H

(1 +H)
? 0 (8.14)

For H we can now have a positive bias if M = H � G < 0 and it is unbiased if
H = G, i.e. if M = 0. It could be seen that the bias for G is smaller than for ML
but larger than for the one step estimator. The bias for H is smaller than for the
MLE or the NBC for some values of (G;H), but not for all.

8.3. Identi�cation when looking at the unconditional distribution of (G;H):

If in section 6.1. we consider the identi�cation of f(G;H) instead of the distribution
conditional on the �rst observation, equation (6.1) is:

�j =

Z 1

0

Z 1

0

pj (G;H) Pr(yi0jG;H)f (G;H) dGdH; j = 1; 2:::2T+1 (8.15)

where pj (G;H) is given by equation (6.2) as previously, but f (G;H) is now the
unconditional distribution of (G;H).
In the example considered in section 6.1 with T = 3, where we restrict the

distribution of the G's and H's to be discrete, each with three values, there is
an easy and general way of specifying Pr(yi0jG;H) without imposing any further
restriction: for each of the nine combinations (Gk; Hl) we have to estimate Pr(yi0 =
1jGk; Hl) as an additional parameter. Then, the number of parameters to estimate
are the six parameter describing each type, fG1; G2; G3g and fH1; H2; H3g, the eight
parameters in � that give the probabilities of each of the nine combinations (Gk; Hl) ;
and the nine conditional probabilities of the initial observation, Pr(yi0 = 1jGk; Hl).
This is a total of 23 unknowns. Here we are considering all the possible sequences,
both those starting with yi0 = 0 and yi0 = 1. Thus, A is an (16� 9) matrix given
by

Ajm = (Gm)
nj01 (1�Gm)

nj00 (Hm)
nj11 (1�Hm)

nj10 Pr(yi0jGm; Hm)

Now, � = A� has 14 di�erent equations and 23 unknowns. So, the distribution is
not identi�ed.
If we now consider T = 4, the number of unknowns does not change, it is 23.

However the number of independent equations in � = A� has increased to 24. Thus
in this particular example condition 2 for identi�cation is satis�ed when we have
more periods available.
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Figure 8.1: Marginal densities of �i and �i

Figure 8.2: Estimated state dependence parameter, �i
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Figure 8.3: Estimates of marginal dynamic e�ects

Figure 8.4: Distribution of the dynamic marginal e�ect
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Figure 8.5: Inference for MLE and NBC with T = 3
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Figure 8.6: Bias and mse for three estimators, T = 3.
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Figure 8.7: Bias and mse for estimators of marginal dynamic e�ect.
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Figure 8.8: MIMSE and MLE of M, in terms of MSE
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Figure 8.9: Estimates of the distribution ofM for T = 9 and N !1, uniform case.
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Figure 8.10: Q-Q plot of estimators of M for T = 9 and N !1, uniform case.
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Figure 8.11: Estimates of the distribution of M , for T = 9 and many households.
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